Simulation of air shock wave using the equations of state for the Jones--Wilkins--Lee detonation products
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a mathematical model of the propagation of an air shock wave arising from the initiation of a substance with a high energy consumption and the subsequent flow of a mixture of air and gaseous detonation products. Various options for evaluating the correctness of the set of constants included in the equation of state for the Jones–Wilkins–Lee (JWL) detonation products are discussed. The results of model calculations based on the proposed technique, performed on structured and structurally irregular grids, are presented. The results obtained are discussed in comparison with analytical solutions of model problems and calculated data obtained using commercial packages.
Keywords: mathematical model, detonation, JWL equation state, shock wave.
@article{MM_2022_34_4_a0,
     author = {V. V. Valko and V. A. Gasilov and N. O. Savenko and V. S. Solovyova},
     title = {Simulation of air shock wave using the equations of state for the {Jones--Wilkins--Lee} detonation products},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a0/}
}
TY  - JOUR
AU  - V. V. Valko
AU  - V. A. Gasilov
AU  - N. O. Savenko
AU  - V. S. Solovyova
TI  - Simulation of air shock wave using the equations of state for the Jones--Wilkins--Lee detonation products
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 3
EP  - 22
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a0/
LA  - ru
ID  - MM_2022_34_4_a0
ER  - 
%0 Journal Article
%A V. V. Valko
%A V. A. Gasilov
%A N. O. Savenko
%A V. S. Solovyova
%T Simulation of air shock wave using the equations of state for the Jones--Wilkins--Lee detonation products
%J Matematičeskoe modelirovanie
%D 2022
%P 3-22
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a0/
%G ru
%F MM_2022_34_4_a0
V. V. Valko; V. A. Gasilov; N. O. Savenko; V. S. Solovyova. Simulation of air shock wave using the equations of state for the Jones--Wilkins--Lee detonation products. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a0/

[1] V.A. Gasilov, G.A. Bagdasarov, A.S. Boldarev, S.V. Dyachenko, E.L. Kartasheva, O.G. Olkhovskaya, Svidetelstvo o gosudarstvennoi registratsii programmy EVM. Programmnyi kompleks MARPLE, Pravoobladatel IPM im. M.V. Keldysha RAN No 2012660911; zaiavl. 11.10.12; zareg. 30.12.2012

[2] A. S. Boldarev, O. G. Olkhovskaya, V. V. Valko, V. S. Soloveva, “Termodinamicheskie modeli gazovyck smesei i ikh primenenie v gidrodinamicheskikh raschetakh”, Keldysh Institute preprints, 2021, 054, 18 pp.

[3] V. V. Valko, O. P. Obraz, V. A. Gasilov, V. S. Soloveva, N. O. Savenko, Uravneniia sostoianiia produktov detonatsii vzryvchatykh veshghestv, Keldysh Institute preprints, 2021, 38 pp.

[4] E. L. Lee, H. C. Horning, J. W. Kury, Adiabatic expansion of high explosive detonation products, UCRL-50422, LLNL, 1968

[5] P. C. Souers, J. W. Kury, “Comparison of cylinder data and code calculation for homogeneous explosives”, Propellants, Explosives and Pyrotechnics, 18 (1993), 175–188 | DOI

[6] P. M. Elek at al., “Determination of detonation products EOS from cylinder test: analytical model and numerical analysis”, Thermal Science, 19 (2015), 35–48 | DOI

[7] T. Incekurk, E. Topkaraoglu, “Determination of JWL equation of state parameters of explosive using cylinder expansion test”, 30th Int. Symposium on Ballistics, 2017, 1490–1497

[8] B. M. Dobratz, P. C. Crawford, LLNL Explosives Handbook, UCRL-52997, 1985

[9] L.P. Orlenko (red.), Fizika vzryva, izdanie 3, Fizmatlit, M., 2002

[10] C. L. Mader, Numerical modeling of explosives and propellants, CRC Press, USA, 1998

[11] N. Iu. Sugak, S. V. Molchanov, Raschet vzryvchatykh kharakteristik VV, Izd-vo Altaiskogo gos. tekh. un-ta im. I.I. Polzunova, Biisk, 2013

[12] M. L. Hobbs, M. R. Baer, “Calibrating the BKW-EOS with a large product species database and measured C-J properties”, Proc. of the 10th Int. Symp. on Detonation (Boston, 1993)

[13] Y. Kato, N. Mori et al, “Detonation temperature of some liquid and solid explosives”, Proc. of the 9th Int. Symposium on Detonation, 1989, 939

[14] L. E. Fried et al, CHEETAH 5.0 computer code, LLNL, 2007

[15] M. Suceska, “Calculation of detonation parameters by EXPLO5 computer program”, Mater. Sci. Forum, 465-466 (2004), 325–330 | DOI

[16] F. Gengiz, A. Ulas, “Numerical prediction of steady-state detonation properties of condensed-phase explosives”, J. Hazardous Materials, 172 (2009), 1646–1651 | DOI

[17] W. A. Trzcinski, “Calculation of the combustion, explosion and detonation characteristics of enetrgetic materials”, Central European J. of Energetic Materials, 7 (2010), 97–113

[18] D. Leriche, G. Zaniolo et al, “Determination of the JWL coefficients of the HEXOMAX explosive”, 30th International Symposium on Ballistics, 2017, 1353–1368