On modeling sources of radiation-induced effects in heterogeneous materials
Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 117-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the calculation of initial data for computing the radiation-induced secondary effects in a heterogeneous environment is considered. A method for solving the problem of integration "according to data" of the results of modeling cascade processes of radiation transport and the processes of generation of secondary radiation-induced effects is proposed. The method is based on a multidimensional approximation of the results of statistical modeling of the interaction of radiation with matter on a difference grid designed for numerical solution of the equations of electro- and thermodynamics. The approximation is built using neural network technology. The geometric model of a heterogeneous medium is based on Stilinger-Lubachevsky algorithms for multimodal structures. The results of demonstration calculations are presented.
Keywords: radiation transfer, multidimensional approximation, radiation-induced effects, neural networks.
@article{MM_2022_34_3_a6,
     author = {V. A. Soboleva and M. E. Zhukovskiy},
     title = {On modeling sources of radiation-induced effects in heterogeneous materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--130},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a6/}
}
TY  - JOUR
AU  - V. A. Soboleva
AU  - M. E. Zhukovskiy
TI  - On modeling sources of radiation-induced effects in heterogeneous materials
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 117
EP  - 130
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a6/
LA  - ru
ID  - MM_2022_34_3_a6
ER  - 
%0 Journal Article
%A V. A. Soboleva
%A M. E. Zhukovskiy
%T On modeling sources of radiation-induced effects in heterogeneous materials
%J Matematičeskoe modelirovanie
%D 2022
%P 117-130
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a6/
%G ru
%F MM_2022_34_3_a6
V. A. Soboleva; M. E. Zhukovskiy. On modeling sources of radiation-induced effects in heterogeneous materials. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 117-130. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a6/

[1] E. I. Popov, Spuskaemye apparaty, Znanie, M., 1985

[2] I. P. Bezrodnykh, A. P. Tiutnev, V. T. Semenov, Radiatsionnye effecty v kosmose, v. 2, Vozdeistvie kosmicheskoi radiatsii na elektrotekhnicheskie materialy, AO “Corporatsiia” VNIIEM, M., 2016

[3] M. Bruzzi, H. F. W. Sadrozinski, A. Seiden, “Comparing radiation tolerant materials and devices for ultra rad-hard tracking detectors”, Nuclear Instruments and Methods in Physics Research, A, 579 (2007), 754–761 | DOI

[4] A. V. Berezin, Yu. A. Volkov, M. B. Markov, I. A. Tarakanov, “The radiation-induced conductivity of silicon”, Math. Montis, 33 (2015), 69–87

[5] F. N. Voronin, K. K. Inozemtseva, M. B. Markov, “Electromagnetic and Thermomechanical Effect Produced by an Electronic Beam on a Solid Barrier”, Math. Models Comput. Simul., 10:4 (2018), 407–417 | DOI | MR

[6] M. E. Zhukovskiy, M. B. Markov, R. V. Uskov, “Modeling of radiation-induced electric current in the materials of finely dispersed structure”, Math. Montis, 47 (2020), 65–74 | Zbl

[7] M. E. Zhukovskiy, R. V. Uskov, E. B. Savenkov, M. V. Alekseev, M. B. Markov, F. N. Voronin, “Model for the Radiation Transport in the Matter of Porous-Type Heterogeneous Materials”, Math. Models Comput. Simul., 11:4 (2019), 415–425 | DOI | MR

[8] V. A. Egorova, F. N. Voronin, M. E. Zhukovskiy, M. B. Markov, A. I. Potapenko, R. V. Uskov, D. S. Boykov, “Model of Radiation-Induced Thermomechanical Effects in Heterogeneous Finely Dispersed Materials”, Math. Models Comput. Simul., 12:5 (2020), 729–739 | DOI | MR

[9] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997 | Zbl

[10] Simon Haykin, Neural networks. A comprehensive Foundation, Second edition, Prentice hall, Upper Saddle River, New Jersey 07458, 1999

[11] M. E. Zhukovskiy, S. V. Podoliako, M. B. Markov, R. V. Uskov, C. Bellon, G.-R. Jaenisch, “Supercomputing the cascade processes of radiation transport”, 19th WCNDT World conf. on nondestructive testing (Proc.), 2016 http://www.ndt.net/article/wcndt2016/papers/p49.pdf

[12] M. E. Zhukovskiy, R. V. Uskov, “Hybrid parallelization of the algorithms of radiation cascade transport modeling”, Math Models Comput. Simul., 7 (2015), 601–610 | DOI | MR

[13] M. Skoge, A. Donev, F. H. Stillinger, S. Torquato, “Packing hard spheres in high dimensional Euclidean spaces”, Phys. Rev., E, 74 (2006), 041127 | DOI | MR

[14] M. V. Alekseev i dr., “O modelirovanii radiatsionno-indutsirovannikh termomekhanicheskikh effektov v geterogennikh materialakh slozhnoi dispersnoi strukturi”, Preprinty IPM im. M.V. Keldisha | DOI

[15] M. E. Zhukovskii, R. V. Uskov, “Matematicheskoe modelirovanie radiatsionnoi emissii elektronov na gibridnikh superkomputerakh”, Vych. met. i programmirovanie, 13:1 (2012), 271–279

[16] V. P. Efremov, A. I. Potapenko, “Termomekhanicheskie protsessi v geterogennikh materialakh pod deistviem intensivnikh potokov energii”, Teplofizika visokikh temperatur, 48:6 (2010), 1–7

[17] A. V. Berezin, D. A. Zhukov, M. E. Zhukovskii, V. V. Koniukhov, V. I. Krainiukov, M. B. Markov, Iu. V. Pomazan, A. I. Potapenko, “Modelirovanie elektromagnitnikh effektov v slognikh konstruktsiiakh pri vozdeistvii impulsnykh izluchenii”, Mat. modelir. i chisl. metody, 6 (2015), 58–72

[18] M. Zhukovskiy, S. Podoliako, G. R. Jaenisch, C. Bellon, V. Samadurau, “Monte Carlo Simulation Tool with CAD Interface”, Review of Progress in Quantitative Nondestructive Evaluation, 25 (2006), 574–579 | DOI

[19] A. V. Berezin, A. S. Vorontsov, M. E. Zhukovskiy et al., “Particle method for electrons in a scattering medium”, Comput. Math. Math. Phys., 55 (2015), 1534–1546 | DOI | MR | Zbl

[20] V. A. Gasilov, A. S. Boldarev, S. V. D'iachenko, O. G. Olkhovskaia, E. L. Kartasheva, S. N. Bolyrev, G. A. Bagdasarov, I. V. Gasilova, M. S. Boiarov, V. A. Shmyrov, “Paket priklaqdnykh programm MARPLE3D dlia modelirovaniia na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmi”, Matem. modelirovanie, 24:1 (2012), 55–87 | Zbl

[21] A. V. Berezin, A. A. Kriukov, B. D. Pliushchenkov, “Metod vychisleniia elektromagnitnogo polia s zadannym volnovym frontom”, Matem. modelirovanie, 23:3 (2011), 109–126 | MR | Zbl

[22] A. N. Andrianov, A. V. Berezin, A. S. Vorontsov, K. N. Efimkin, M. B. Markov, “Modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniia na mnogoprotsessornykh vychislitelnykh sistemakh”, Matem. modelirovanie, 20:3 (2008), 98–114 | Zbl

[23] V. A. Gasilov, I. V. Gasilova, L. V. Klochkova et al, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates”, Comput. Math. and Math. Phys., 55 (2015), 1310–1323 | DOI | MR | Zbl

[24] V. Egorova, M. Zhukovskiy, “Handling of the radiative electron emission modeling results by use of the neural networks”, Mathematica Montisnigri, 38 (2017), 89–99 | Zbl

[25] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997 | Zbl

[26] K. Vorontsov, Matematicheskie metody obucheniia po pretsedentam (teoriia obucheniia mashin)

[27] F. P. Vasil'ev, Metody optimizatsii, Izdatelstvo “Faktorial Press”, 2002

[28] S. Osowski, Sieci neuronowe do przetwarzania informacji, Oficyna wydawnicza politechniki warszawskeij, Warszawa, 2000

[29] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd ed., Springer, USA, 2006 | MR | Zbl