Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_3_a5, author = {V. I. Mazhukin and O. N. Koroleva and M. M. Demin and A. V. Shapranov and A. A. Aleksashkina}, title = {Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {101--116}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a5/} }
TY - JOUR AU - V. I. Mazhukin AU - O. N. Koroleva AU - M. M. Demin AU - A. V. Shapranov AU - A. A. Aleksashkina TI - Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters JO - Matematičeskoe modelirovanie PY - 2022 SP - 101 EP - 116 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a5/ LA - ru ID - MM_2022_34_3_a5 ER -
%0 Journal Article %A V. I. Mazhukin %A O. N. Koroleva %A M. M. Demin %A A. V. Shapranov %A A. A. Aleksashkina %T Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters %J Matematičeskoe modelirovanie %D 2022 %P 101-116 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a5/ %G ru %F MM_2022_34_3_a5
V. I. Mazhukin; O. N. Koroleva; M. M. Demin; A. V. Shapranov; A. A. Aleksashkina. Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 101-116. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a5/
[1] N. Elahi, M. Kamali, M. H. Baghersad, “Recent biomedical applications of gold nanoparticles: A review”, Talanta, 184 (2018), 537–556 | DOI
[2] M. P. Vukalovich, I. I. Novikov, Termodinamika, Mashinostroenie, M., 1972
[3] R. Winter, C. Pilgrim, F. Hensel, C. Morkel, W. Gläser, “Structure and dynamics of expanded liquid alkali metals”, J. Non-Crystalhne Sohds, 156-158 (1993), 9–14 | DOI
[4] F. Hensel, E. Marceca, W. C. Pilgrim, “The metal-non-metal transition in compressed metal vapours”, J. Physics: Condensed Matter, 10:49 (1998), 11395–11404 | DOI
[5] F. Hensel, G. F. Hohl, D. Schaumloffel, W. C. Pilgrim, E. U. Franck, “Empirical regularities in behaviour of the critical constants of fluid alkali metals”, J. Phys. Chem., 214:6 (2000), 823–831
[6] J. Jüngst, B. Knuth, F. Hensel, “Observation of singular diameter in the coexistence curve of metals”, Phys. Rev. Lett., 55 (1985), 2160–2163 | DOI
[7] G. R. Gathers, “Dynamic methods for investigating thermophysical properties of matter at very high temperatures and pressures”, Reports on Progress in Physics, 49:4 (1986), 341–396 | DOI
[8] G. Pottlacher (Ed.), High Temperature Thermophysical Properties of 22 Pure Metals, Edition keeper, Pab., 2010
[9] M. M. Martyniuk, “Parametry kriticheskoi tochki metallov”, J. fiz. himii, 57:4 (1983), 810–821
[10] K. Boboridis, G. Pottlacher, H. Jager, “Determination of the Critical Point of Gold”, International Journal of Thermophysics, 20:4 (1999), 1289–1297 | DOI
[11] G. Pottlacher, W. Schröer, “Estimation of critical data and phase diagrams of pure molten metals”, High Temperatures, High Pressures, 2014, 201–215
[12] V. E. Fortov, A. N. Dremin, A. A. Leont'ev, “Evaluation of the parameters of the critical point”, High Temperature, 13:5 (1975), 984–992
[13] A. A. Likalter, “On the critical parameters of metals”, High Temperature, 23:3 (1985), 371–377
[14] G. Lang, “Critical temperatures and temperature coefficients of the surface tension of liquid metals”, Zeitschrift fuer Metallkunde, 68:3 (1977), 213–218
[15] E. M. Apfelbaum, V. S. Vorob'ev, “The similarity relations set on the basis of symmetrization of the liquid — vapor phase diagram”, J. Phys. Chem. B, 119 (2015), 8419 | DOI
[16] E. M. Apfelbaum, V. S. Vorob'ev, “The Wide-Range Method to Construct the Entire Coexistence Liquid-Gas Curve and to Determine the Critical Parameters of Metals”, J. Phys. Chem. B, 119:35 (2015), 11825–11832 | DOI
[17] S. Blairs, M. H. Abbasi, “Correlation between surface tension and critical temperatures of liquid metals”, Journal of Colloid and Interface Science, 304 (2006), 549–553 | DOI
[18] G. Kaptay, “On the Order-Disorder Surface Phase Transition and Critical Temperature of Pure Metals Originating from BCC, FCC, and HCP Crystal Structures”, Int. J. Thermophys, 33 (2012), 1177–1190 | DOI
[19] A. L. Khomkin, A. S. Shumikhin, “The thermodynamics and transport properties of transition metals in critical point”, High Temp. High Press, 46:4-5 (2017), 367–380
[20] H. Kanno, “New empirical formula for estimating critical temperature of element from solid properties”, Journal of Inorganic and Nuclear Chemistry, 38:8 (1976), 1573–1575 | DOI
[21] V. I. Mazhukin, A. A. Samokhin, M. M. Demin, A. V. Shapranov, “Explosive boiling of metals upon irradiation by a nanosecond laser pulse”, Quantum Electronics, 44:4 (2014), 283–285 | DOI
[22] V. I. Mazhukin, A. A. Samokhin, A. V. Shapranov, M. M. Demin, “Modeling of thin film explo-sive boiling surface evaporation and electron thermal conductivity effect”, Mater. Res. Express, 2:1 (2015), 016402, 9 pp. | DOI
[23] M. M. Demin, O. N. Koroleva, A. V. Shapranov, A. A. Aleksashkina, “Atomistic modeling of the critical region of copper using a liquid-vapor coexistence curve”, Math. Montis, 46 (2019), 52–61 | DOI | MR
[24] M. V. Shugaev, C. Y. Shih, E. T. Karim, C. Wu, L. V. Zhigilei, “Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer”, Appl. Surf. Sci., 417 (2017), 54–63 | DOI
[25] D. I. Zhukhovitskii, V. V. Zhakhovsky, “Thermodynamics and the structure of clusters in the dense Au vapor from molecular dynamics simulation”, J. Chem. Phys., 152 (2020), 224705 | DOI
[26] V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials”, Appl. Surf. Sci., 255 (2009), 9592–9596 | DOI
[27] C. Desgranges, L. Widhalm, J. Delhommelle, “Scaling Laws and Critical Properties for FCC and HCP Metals”, J. Phys. Chem. B, 2016, 1–24
[28] E. M. Apfelbaum, V. S. Vorob'ev, “The Zeno line for Al, Cu, and U”, J. Phys. Chem. B, 120 (2016), 4828–4833 | DOI
[29] J. K. Singh, J. Adhikari, S. K. Kwak, “Vapor-liquid phase coexistence curves for Morse fluids”, Fluid Phase Equilib., 248 (2006), 1–6 | DOI
[30] A. A. Likalter, “Critical points of metals of three main groups and selected transition metals”, Physica A: Statistical Mechanics and its Applications, 311 (2002), 137–149 | DOI
[31] L. V. Al'tshuler, A. V. Bushman, M. V. Zhernokletov, V. N. Zubarev, A. A. Leont'ev, V. E. Fortov, “Unloading isentropes and the equation of state of metals at high energy densities”, JETP, 51:2 (1980), 373–383 | MR
[32] D. A. Young, B. J. Alder, “Critical point of metals from the van der Waals model”, Phys. Rev. A, 3:1 (1971), 364–371 | DOI
[33] A. A. Likalter, “Equation of state of metallic fluids near the critical point of phase transition”, Phys. Rev. B, 53 (1996), 4386 | DOI
[34] S. Blairs, Mh. Abbasi, “Internal-pressure approach for the estimation of critical-temperatures of liquid-metals”, Acustica, 79:1 (1993), 64–72
[35] V. P. Skripov, Metastable Liquids, Halsted Press, John Wiley Sons, New York, 1974
[36] V. A. Kirillin, V. V. Sychev, A. E. Sheidlin, Tekhnicheskaia termodinamika, Izd-vo MEI, M., 2008
[37] F. Hensel, “35 years Liquid Metals conferences: what do we and what do we not yet understand about liquid metals”, J. Non-Cryst. Solids, 312-314 (2002), 1–7 | DOI
[38] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Oprede-lenie teplofizicheskikh svoistv zolota v oblasti fazovogo perehoda plavlenie-kristallizatciia. Molekuliarno-dinamicheskiy podhod”, Matematicheskoe modelirovanie, 34:1 (2022), 59–80 | DOI | Zbl
[39] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[40] V. I. Mazhukin, A. V. Shapranov, “Matematicheskoe modelirovanie protcessov nagreva i plavleniia metallov. Chast I. Model i vychislitelnyi algoritm”, Keldysh Institute Preprints, 2012, 031, 27 pp.
[41] H. J. C. Berendsen, J. P.M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[42] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 2002
[43] V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, A. V. Rudenko, “Molecular dynamics simulation of critical point parameters for silicon”, Math. Montis., 31 (2014), 56–76
[44] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl