Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_3_a4, author = {A. Yu. Shcheglov and S. V. Netessov}, title = {On the reconstruction of functional coefficients for a quasi-stable population dynamics model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--100}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a4/} }
TY - JOUR AU - A. Yu. Shcheglov AU - S. V. Netessov TI - On the reconstruction of functional coefficients for a quasi-stable population dynamics model JO - Matematičeskoe modelirovanie PY - 2022 SP - 85 EP - 100 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a4/ LA - ru ID - MM_2022_34_3_a4 ER -
%0 Journal Article %A A. Yu. Shcheglov %A S. V. Netessov %T On the reconstruction of functional coefficients for a quasi-stable population dynamics model %J Matematičeskoe modelirovanie %D 2022 %P 85-100 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a4/ %G ru %F MM_2022_34_3_a4
A. Yu. Shcheglov; S. V. Netessov. On the reconstruction of functional coefficients for a quasi-stable population dynamics model. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 85-100. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a4/
[1] G.I. Bell, E.C. Anderson, “Cell growth division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures”, Biophys. J., 7:4 (1967), 329–351 | DOI
[2] S. I. Rubinow, “Age-structured populations in the theory of cell populations”, v. II, Studies in Mathematical Biology, 16, ed. Levin S. A., 1978, 389–410 | MR
[3] S. Busenberg, M. Iannelli, “A class of nonlinear diffusion problems in age-dependent population dynamics”, J. Nonl. Anal.: Theory Meth. Appl., 7:5 (1983), 501–529 | DOI | MR | Zbl
[4] M. Iannelli, “Mathematical problems in the description of age structured populations”, Math. in Biol. and Medicine, Lecture Notes in Biomath., 57, Springer, 1985, 19–32 | DOI | MR
[5] S. Busenberg, M. Iannelli, “Separable models in age-dependent population dynamics”, J. Math. Biol., 22:2 (1985), 145–173 | DOI | MR | Zbl
[6] M. Iannelli, Mathematical theory of age-structured population dynamics, Giardini Editori e Stampatori in Pisa, Pisa, 1995, 174 pp.
[7] A. J. Coale, The growth and structure of human populations, Princeton University Press, Princeton, 1972, 227 pp.
[8] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics. I”, Proceedings of the Royal Society, 115A (1927), 700–721 | Zbl
[9] A. J. Lotka, “Population analysis: a theorem regarding the stable age distribution”, J. Washington Acad. Sci., 27:7 (1937), 299–303
[10] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populiatsii”, Problemy kibernetiki, 1972, no. 5, 100–106
[11] H. Inaba, “Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model”, J. Math. Biol., 54 (2007), 101–146 | DOI | MR | Zbl
[12] A. G. Bodrov, A. A. Nikitin, “Examining the biological species steady-state density equation in spaces with different dimensions”, J. Moscow Univ. Comput. Math. Cybern., 39:4 (2015), 157–162 | DOI | MR | Zbl
[13] M. Iannelli, F. Milner, The Basic Approach to Age-Structured Population Dynamics. Models, Methods and Numerics, Springer, Cham, 2017, 350 pp. | MR | Zbl
[14] H. Singh, J. Dhar, Mathematical Population Dynamics and Epidemiology in Temporal and Spatio-Temporal Domains, Apple Academic Press, Toronto, 2018, 273 pp. | MR
[15] A. Kucharski, T. W. Russel, Ch. Diamond, Y. Liu, “Early dynamics of transmission and con-trol of COVID-19: a mathematical modelling study”, Lancet Infect Dis., 20:5 (2020), 553–558 | DOI
[16] R. Chernikha, V. Davydovich, “A mathematical model for the COVID-19 outbreak and its applications”, Symmetry, 12:6 (2020), 990–993 | DOI
[17] K. Prem, Y. Liu, T. W. Russel, A. J. Kucharski, “The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study”, Lancet Public Health, 5:5 (2020), 261–270 | DOI | MR
[18] D. M. Ediev, “On the existence and uniqueness of the remaining life expectancy in the model of a stable population”, Math. Models Comput. Simul., 13 (2021), 964–970 | DOI | MR
[19] P. J. Mitkowski, Mathematical Structures of Ergodicity and Chaos in Population Dynamics, Springer, Cham, 2021, 97 pp. | MR | Zbl
[20] A. M. Denisov, A. S. Makeev, “Iterative methods for solving an inverse problem for a population model”, J. Comput. Math. and Math. Phys., 44:8 (2004), 1404–1413 | MR | Zbl
[21] A. M. Denisov, A. S. Makeev, “Numerical method for solving an inverse problem for a population model”, J. Comput. Math. and Math. Phys., 46:3 (2006), 470–480 | DOI | MR | Zbl
[22] A. S. Makeev, “Application of Tikhonov's regularization method to solve inverse problems for two population models”, Comput. Math. and Model., 18:1 (2007), 1–9 | DOI | MR | Zbl
[23] D. V. Churbanov, “Uniqueness of finding the coefficient of the derivative in a first order nonlinear equation”, J. Moscow Univ. Comput. Math. Cybern., 37:1 (2013), 8–13 | DOI | MR | Zbl
[24] F. Clement, B. Laroche, F. Robin, “Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model”, J. Math. Bios. and Eng., 16:4 (2019), 3018–3046 | DOI | MR
[25] S. G. Golovina, A. G. Razborov, “Reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimensional internal initial-boundary value problem for the homogeneous heat equation”, Comput. Math. and Model., 25:1 (2014), 49–56 | DOI | MR | Zbl
[26] S. I. Solov'eva, S. R. Tuikina, “Numerical solution of the inverse problem for the model of cardiac excitation”, Comput. Math. and Model., 27:2 (2016), 162–171 | DOI | MR
[27] A. V. Baev, S. V. Gavrilov, “An iterative way of solving the inverse scattering problem for an acoustic system of equations in an absorptive layered nonhomogeneous medium”, J. Moscow Univ. Comput. Math. Cybern., 42:2 (2018), 55–62 | DOI | MR | Zbl
[28] A. M. Denisov, A. A. Efimov, “The inverse problem for an integro-differential equation and its solution method”, Comput. Math. and Model., 30:4 (2019), 403–412 | DOI | MR | Zbl
[29] I. V. Tikhonov, Vu Nguyen Son Tung, “Solvability of a nonlocal problem for an evolution equation with a superstable semigroup”, J. Differential Eq., 56:4 (2020), 478–498 | DOI | MR | Zbl