Mathematical modeling of intense charged particles beams in extended electron-optical systems
Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 71-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Intense charged particles beams serve as a working element in electrophysical devices for a wide range of scientific and practical applications. Mathematical modeling of intense beams leads to the solution of a self-consistent nonlinear problem, including the calculation of electric and magnetic fields, charged particles trajectories and space charge. An extended one is understood as an electron-optical system, the size of which in the direction of the beam movement is much larger than the transverse size. The use of traditional computational approaches to modeling such systems has not yielded satisfactory results. In this paper, we propose new algorithms and technologies aimed at improving the accuracy and reducing the computation time. They are based on the domain decomposition methods and are as follows. First, the extended computational domain is divided into two subdomains: in the first of them, an intense beam is formed, and in the second, it is further accelerated and transported; the solutions are “stitched” by the alternating Schwarz method. Secondly, in each of these subdomains, an adaptive quasi-structured locally modified grid is constructed, consisting of structured subgrids. The proposed quasistructured grid can significantly reduce labor costs when calculating the charged particles trajectories. Thirdly, at the emitter, the singularity is distinguished by introducing the near-emitter subdomain. In this subdomain, an approximate analytical solution is constructed, which is "stitched" with the numerical solution in the main subdomain in the Broyden iterative process. With the help of the proposed algorithms and technologies, the results of modeling a complex practical system were obtained, which give a good match with the results of field experiments.
Keywords: mathematical modeling, intense beams, decomposition method, quasistructured grids, singularity detection.
@article{MM_2022_34_3_a3,
     author = {A. N. Kozyrev and V. M. Sveshnikov},
     title = {Mathematical modeling of intense charged particles beams in extended electron-optical systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a3/}
}
TY  - JOUR
AU  - A. N. Kozyrev
AU  - V. M. Sveshnikov
TI  - Mathematical modeling of intense charged particles beams in extended electron-optical systems
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 71
EP  - 84
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a3/
LA  - ru
ID  - MM_2022_34_3_a3
ER  - 
%0 Journal Article
%A A. N. Kozyrev
%A V. M. Sveshnikov
%T Mathematical modeling of intense charged particles beams in extended electron-optical systems
%J Matematičeskoe modelirovanie
%D 2022
%P 71-84
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a3/
%G ru
%F MM_2022_34_3_a3
A. N. Kozyrev; V. M. Sveshnikov. Mathematical modeling of intense charged particles beams in extended electron-optical systems. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 71-84. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a3/

[1] V. A. Syrovoi, Vvedenie v teoriiu intensivnykh puchkov zariazhennykh chastits, Energoatomizdat, M., 2004, 486 pp.

[2] V. A. Syrovoi, Teoriia intensivnykh puchkov zariazhennykh chastits, Energoatomizdat, M., 2004, 552 pp.

[3] V. P. Ilin, Chislennye metody resheniia zadach elektrooptiki, Nauka, Novosibirsk, 1974, 203 pp. | MR

[4] S. I. Molokovskii, A. D. Sushkov, Intensivnye eliktronnye i ionnye puchki, Energoatomizdat, M., 1991, 305 pp.

[5] I. V. Aliamoskii, Elektronnye puchki i elektronnye pushki, Sovetskoe radio, M., 1966, 454 pp.

[6] D. A. Ovsiannikov, I. D. Rubtsova, V. A. Kozynchenko, Nekotorye problemy modelirovaniia intensivnykh puchkov zariazhennykh chastits v lineinykh uskoriteliakh, OOO “Izdatelstvo VVM”, SPb, 2013, 145 pp.

[7] E. Munro, “Numerical simulation methods for electron and ion optics”, Nuclear Instruments and Methods in Physical Research A, 645 (2011), 266–272 | DOI

[8] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation, SIAM, Philadelphia, USA, 2015, 238 pp. | MR | Zbl

[9] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, Oxford, 1999, 376 pp. | MR | Zbl

[10] Iu. V. Vasilevskii, M. A. Olshanskii, Kratkii kurs po mnogosetochnym metodam i metodam dekompozitsii oblasti, MGU, M., 2007, 104 pp.

[11] A. V. Skvortsov, “Obzor algoritmov postroeniia trianguliatsii Delone”, Vychislitelnye metody i programmirovanie, 3:1 (2002), 18–43 | MR

[12] A. N. Kozyrev, V. M. Sveshnikov, “O postroenii dvumernykh lokalno-modifitsirovannykh kvazistrukturirovannykh setok i reshenii na nikh kraevykh zadach v oblastiakh s krivolineinoi granitsei”, Vestnik IUUrGU. Seriia: Vychislitelnaia matematika i informatika, 6:2 (2017), 5–21

[13] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007, 370 pp.

[14] J. Saad, M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869 | DOI | MR | Zbl

[15] S. K. Godunov, Uravneniia matematicheskoi fiziki, Nauka, M., 1979, 391 pp. | MR

[16] P. I. Akimov, G. P. Osipova, V. A. Syrovoi, “Problems in increasing the accuracy of programs for analysing the trajectories of intense electron beams”, Computational Mathematics and Mathematical Physics, 29:2 (1989), 54–66 | DOI | MR

[17] V. M. Sveshnikov, “Calculation of the intensive charged particle beams with increased accuracy”, Proceedings of SPIE, 5398, 2004, 34–50 | DOI | MR

[18] J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, 1983, 378 pp. | MR | MR | Zbl

[19] V. T. Astrelin, M. S. Vorobyov, A. N. Kozyrev, V. M. Sveshnikov, “Numerical simulation of the operation of a wide-aperture electron gun with a grid plasma emitter and beam extraction into the atmosphere”, J. of Applied Mechanics Technical Phys., 60:5 (2019), 785–792 | DOI | MR