Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_3_a2, author = {B. N. Chetverushkin and I. V. Mingalev and V. M. Chechetkin and K. G. Orlov and E. A. Fedotova and V. S. Mingalev}, title = {Block of calculation of the solar radiation field in the general circulation model of the {Earth's} lower and middle atmosphere}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--70}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a2/} }
TY - JOUR AU - B. N. Chetverushkin AU - I. V. Mingalev AU - V. M. Chechetkin AU - K. G. Orlov AU - E. A. Fedotova AU - V. S. Mingalev TI - Block of calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere JO - Matematičeskoe modelirovanie PY - 2022 SP - 43 EP - 70 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a2/ LA - ru ID - MM_2022_34_3_a2 ER -
%0 Journal Article %A B. N. Chetverushkin %A I. V. Mingalev %A V. M. Chechetkin %A K. G. Orlov %A E. A. Fedotova %A V. S. Mingalev %T Block of calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere %J Matematičeskoe modelirovanie %D 2022 %P 43-70 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a2/ %G ru %F MM_2022_34_3_a2
B. N. Chetverushkin; I. V. Mingalev; V. M. Chechetkin; K. G. Orlov; E. A. Fedotova; V. S. Mingalev. Block of calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 43-70. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a2/
[1] O. M. Belotserkovskii, A. M. Oparin, V. M. Chechetkin, Turbulence: new approaches, Cambridge International Science Publishing Ltd, 2005, 280 pp.
[2] I. V. Mingalev, N. M. Astaf'eva, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, O. V. Mingalev, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection”, Cosmic Research, 50 (2012), 233–248 | DOI
[3] B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, O. V. Mingalev, “Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth”, Math. Mod. and Comp. Simul., 10:2 (2018), 176–185 | DOI | MR
[4] B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, “The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth”, Mathematical Models and Computer Simulations, 12:5 (2020), 803–815 | DOI | MR | Zbl
[5] IU. M. Timofeev, A. V. Vasil'ev, Teoreticheskie osnovy atmosfernoi optiki, Nauka, SPb, 2003, 474 pp. | MR
[6] K. IA. Kondratev, Aktinometriya, Gidrometeoizdat, L., 1965, 692 pp.
[7] Kuo-Nan Lion, Ah introduction to atmospheric radiation, Academic Press, NY, 1980, 577 pp.
[8] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2006, 661 pp.
[9] S.D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equati”, Atmospheric and oceanic optics, 12:09 (1999), 730–734
[10] S. D. Tvorogov, O. B. Rodimova, “Calculation of transmission functions at small pressures”, Atmospheric and oceanic optics, 21:11 (2008), 797–803
[11] B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms”, Atmospheric and oceanic optics, 16:03 (2003), 244–246 | MR
[12] B. A. Fomin, P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106
[13] J. M. Edwards, A. Slingo, “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model”, Quarterly Journal of the Royal Meteorological Society, 122 (1996), 689–719 | DOI
[14] M. D. Chou, M. J. Suarez, A solar radiation parameterization for atmospheric studies, NASA/TM-1999-10460. Tech. Rep., Global Model. Data Assimilation, 15, NASA Goddard Space Flight Cent., Greenbelt, Md., 2002, 42 pp. | Zbl
[15] S. Cusack, J. M. Edwards, J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model”, J. Geophys. Res., 104 (1999), 2051–2057 | DOI
[16] T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model”, Appl. Opt., 39 (2000), 4869–4878 | DOI
[17] R. J. Hogan, “The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function”, J. Atmos. Sciences, 2010
[18] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchayushchego gaza, Nauka, M., 1985, 204 pp.
[19] V. Ya. Gol'din, B. N. Chetverushkin, “Methods of solving one-dimensional problems of radiation gas dynamics”, USSR Comput. Math. and Math. Phys., 12:4 (1972), 177–189 | DOI | MR
[20] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | MR | MR | Zbl
[21] E. N. Aristova, M. N. Gertsev, A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation”, Comput. Math. Math. Phys., 57:6 (2017), 1022–1035 | DOI | MR | Zbl
[22] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth's lower and middle atmosphere”, Atmospheric and Oceanic Optics, 31:6 (2018), 582–589 | DOI | MR
[23] M. Lopez-Puertas, F. W. Taylor, A Non-LTE Radiative Transfer In The Atmosphere, Series on Atmospheric, Oceanic and Planetary Physics, 3, World Scientific Publishing Co. Pte. Ltd, 2001, 487 pp. | DOI
[24] G. M. Shved, Vvedenie v dinamiku i energetiku atmosfery, Izd-vo SpbGU, SPb., 2020, 394 pp.
[25] G. M. Shved, A. O. Semenov, “The Standard Problem of Nonlocal Thermodynamic Equilibrium Radiative Transfer in the Rovibrational Band of the Planetary Atmosphere”, Solar System Research, 35:3 (2001), 212–226 | DOI | MR
[26] M. Lopez-Puertas, R. Rodrigo, A. Molina, F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. I. Theoretical basis and application to 15 nm bands”, J. Atmos. Terr. Phys., 48:8 (1986), 729–748 | DOI
[27] M. Lopez-Puertas, R. Rodrigo, A. Molina, F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 nm) and water vapour (6.3 nm) bands and N2(1) and O2(1) vibrational levels”, J. Atmos. Terr. Phys., 48:8 (1986), 749–764 | DOI
[28] M. Lopez-Puertas, G. Zaragoza, M. A. Lopez-Valverde, “Non local thermodynamic equilibrium (LTE) atmospheric limb emission at 4.6 nm. I. An update of the CO2 non-LTE radiative transfer model”, J. Geoph. Res., 103:D7 (1998), 8499–8513 | DOI
[29] V. P. Ogibalov, V. I. Fomichev, A. A. Kutepov, “Radiative heating effected by infrared CO2 bands in the middle and upper atmosphere”, Izvestiya Atmospheric and Ocean Physics, 36:4 (2000), 454–464
[30] H. Nebel, P. P. Wintersteiner, R. H. Picard, J. R. Winick, R. D. Sharma, “CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 nm: Application to Spectral Infrared Rocket Experiment data”, J. Geoph. Res., 99 (1994), 10409–10419 | DOI
[31] V. P. Ogibalov, A. A. Kutepov, G. M. Shved, “Non-local thermodynamic equilibrium in CO2 in the middle atmosphere: II. Populations of the $\nu$1, $\nu$2 mode manifold states”, J. Atm. Solar-Terr. Phys., 60 (1998), 315–329 | DOI
[32] V. P. Ogibalov, “The CO2 non-LTE problem: Taking account of the multi-quantum transitions on the $\nu$2 mode during CO2-O collisions”, Phys. Chem. Earth (B), 25 (2000), 493–499 | DOI
[33] V. P. Ogibalov, G. M. Shved, “Non-local thermodynamic equilibrium in CO2 in the middle atmosphere: III. Simplified models for the set of vibrational states”, J. Atm. Solar-Terr. Phys., 64 (2002), 389–396 | DOI
[34] I. V. Mingalev, K. G. Orlov, E. A. Fedotova, “Allowing for Local Thermodynamic Non-Equilibrium in the Vibrational Bands of Carbon Dioxide Molecules in the Radiation Block of the Model of the General Circulation of Earth's Atmosphere”, Bulletin of the Russian Academy of Sciences: Physics, 85:3 (2021), 282–286 | DOI | MR
[35] L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. Rad. Transfer., 130 (2013), 4–50 | DOI
[36] E. J. Mlawer et al, “Development and recent evaluation of the MT CKD model of continuum absorption”, Phylosophical Transactions of the Royal Society, 370 (2012), 2520–2556
[37] N. I. Ignat'ev, I. V. Mingalev, A. V. Rodin, E. A. Fedotova, “A New Version of the Discrete Ordinate Method for the Calculation of the Intrinsic Radiation in Horizontally Homogeneous Atmospheres”, Comp. Math. and Math. Physics, 55:10 (2015), 1713–1726 | DOI | MR
[38] I. V. Mingalev, K. G. Orlov, E. A. Fedotova, “Vliyanie opticheski tolstyh sloev na nagrev atmosfery sobstvennym izlucheniem”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 14:5 (2017), 100–108
[39] R. A. McClatchey, H.-J. Bolle, K. Ya. Kondratyev, A preliminary cloudless standard atmos-phere for radiation computation, World Climate Res. Prog. Inter. Association for Meteorology Atmospheric Phys., Radiation Commis., 1986, WCP 112, WMO/TD No 24, 60 pp.
[40] V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems”, Comput. Math. Math. Phys., 56:6 (2016), 987–995 | DOI | MR | Zbl