Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_3_a1, author = {O. R. Rahimly and Yu. A. Poveshchenko and S. B. Popov}, title = {Two-layer {1D} completely conservative difference schemes of gas dynamics with adaptive regularization}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {26--42}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a1/} }
TY - JOUR AU - O. R. Rahimly AU - Yu. A. Poveshchenko AU - S. B. Popov TI - Two-layer 1D completely conservative difference schemes of gas dynamics with adaptive regularization JO - Matematičeskoe modelirovanie PY - 2022 SP - 26 EP - 42 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a1/ LA - ru ID - MM_2022_34_3_a1 ER -
%0 Journal Article %A O. R. Rahimly %A Yu. A. Poveshchenko %A S. B. Popov %T Two-layer 1D completely conservative difference schemes of gas dynamics with adaptive regularization %J Matematičeskoe modelirovanie %D 2022 %P 26-42 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a1/ %G ru %F MM_2022_34_3_a1
O. R. Rahimly; Yu. A. Poveshchenko; S. B. Popov. Two-layer 1D completely conservative difference schemes of gas dynamics with adaptive regularization. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 26-42. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a1/
[1] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modeley, Izdatel'stvo MGTU im. N.E. Baumana, M., 2010, 590 pp.
[2] V. M. Goloviznin, A. V. Soloviev, Dispersionnye i dissipativnye kharakteristiki raznostnykh skhem dlya uravneniy v chastnykh proizvodnykh giperbolicheskogo tipa, MAKS Press, M., 2018, 196 pp.
[3] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjogren, “On Godunov-type methods near low densities”, Journal of Computational Physics, 92:2 (1991), 273–295 | DOI | MR | Zbl
[4] A. A. Samarskiy, Yu. P. Popov, Raznostnyye metody resheniya zadach gazovoy dinamiki, Nauka, M., 1992, 424 pp. | MR
[5] I. V. Popov, I. V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, Krassand, M., 2015, 288 pp.
[6] Yu. A. Poveshchenko, M. E. Ladonkina, V. O. Podryga, O. R. Rahimly, Yu. S. Sharova, “Ob odnoi dvukhsloinoi polnostiu konservativnoi raznostnoi skheme gazovoi dinamiki v eilerovykh peremennykh s adaptivnoi reguliarizatsiei”, Preprinty IPM im. M.V. Keldysha RAN, 2019, 014, 23 pp.
[7] O. Rahimly, V. Podryga, Yu. Poveshchenko, P. Rahimly, Yu. Sharova, “Two-Layer Completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution”, Large-Scale Scientific Computing, LSSC 2019, Lecture Notes in Computer Sci., 11958, eds. Lirkov I., Margenov S., 2020, 618–625 | DOI | MR | Zbl
[8] M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Obespechenie entropiinoi ustoichivosti razryvnogo metoda Galerkina v gazodinamicheskikh zadachakh”, Preprinty IPM im. M.V. Keldysha, 2019, 051, 22 pp.
[9] Yu. A. Kriksin, V. F. Tishkin, “Variational entropic regularization of the discontinuous Galerkin method for gasdynamic equations”, Math. Models Comput. Simul., 11 (2019), 1032–1040 | DOI | MR | Zbl
[10] Yu. A. Kriksin, V. F. Tishkin, “Chislennoe reshenie zadachi Einfeldta na osnove razryvnogo metoda Galerkina”, Preprinty IPM im. M.V. Keldysha, 2019, 090, 22 pp.
[11] B. Cockburn, “An Introduction to the Discontinuous Galerkin method for convection-dominated problems”, Lecture Notes in Mathematics, 1697, 1997, 150–268 | DOI | MR
[12] A. C. Robinson et al., “ALEGRA: An Arbitrary Lagrangian-Eulerian Multimaterial, Multiphysics Code”, 46th AIAA Aerospace Sciences Meeting and Exhibit (7–10 January 2008, Reno, Nevada), AIAA 2008-1235 | DOI