Numerical simulation of cellular flame propagation in narrow gaps
Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A computational model for combustion of premixed gases in narrow gaps between parallel plates is presented. The model is based on the numerical solution of conservation equations for multicomponent reacting gas flow in the small Mach number approximation. Detailed kinetic mechanism is used to describe combustion reactions. A block structured adaptive mesh refinement algorithm is applied in order to increase resolution in the high-gradient flow regions, mainly near the flame front. Simulations are performed by the software ParTCS-3D developed by the authors, using the high-performance platform K-100 installed in Keldysh Institute of Applied Mathematics. The efficiency of the parallel implementation of the developed numerical technique is demonstrated. Parametric study is presented in combustion of stoichiometric methane-air mixture, the distance between the plates was varied in the range 3–6 mm. Development of propagating flame instability leading to the formation of cells on the flame front is demonstrated. At small gap width, flame extinction is obtained at a small distance from the ignition source. A dependence of visible flame propagation speed on the gap width is obtained, revealing faster flame propagation in wider gaps due to weaker effects of viscosity and heat losses. The numerical efficiency of the use of structured adaptive hierarchical grids for simulation reacting gas flows, which is characterized by the presence of relatively narrow zones of the reaction (flame fronts), is shown.
Mots-clés : combustion
Keywords: cellular flames, detailed kinetic scheme, high-performance computing.
@article{MM_2022_34_3_a0,
     author = {V. E. Borisov and S. E. Yakush and E. Ya. Sysoeva},
     title = {Numerical simulation of cellular flame propagation in narrow gaps},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/}
}
TY  - JOUR
AU  - V. E. Borisov
AU  - S. E. Yakush
AU  - E. Ya. Sysoeva
TI  - Numerical simulation of cellular flame propagation in narrow gaps
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 3
EP  - 25
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/
LA  - ru
ID  - MM_2022_34_3_a0
ER  - 
%0 Journal Article
%A V. E. Borisov
%A S. E. Yakush
%A E. Ya. Sysoeva
%T Numerical simulation of cellular flame propagation in narrow gaps
%J Matematičeskoe modelirovanie
%D 2022
%P 3-25
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/
%G ru
%F MM_2022_34_3_a0
V. E. Borisov; S. E. Yakush; E. Ya. Sysoeva. Numerical simulation of cellular flame propagation in narrow gaps. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/

[1] Y. Ju, K. Maruta, “Microscale combustion: Technology development and fundamental research”, Prog. Energy Combust. Sci., 37 (2011), 669–715 | DOI

[2] A. Fan, S. Minaev, E. Sereshchenko, R. Fursenko, S. Kumar, W. Liu, K. Maruta, “Experimental and numerical investigations of flame pattern formations in a radial microchannel”, Proc. Combust. Inst., 32 II, 2009, 3059–3066 | DOI

[3] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of Combustion and Explosions, Plenum, N.Y., 1985, 597 pp. | MR | MR

[4] V. V. Bychkov, M. A. Liberman, “Dynamics and stability of premixed flames”, Phys. Rep., 325 (2000), 115–237 | DOI | MR

[5] M. Matalon, “Intrinsic flame instabilities in premixed and nonpremixed combustion”, Annu. Rev. Fluid Mech., 39 (2007), 163–191 | DOI | MR | Zbl

[6] P. Clavin, G. Searby, Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars, Cambridge Press, Cambridge, UK, 2016 | Zbl

[7] D. Bradley, C. M. Harper, “The development of instabilities in laminar explosion flames”, Combust. Flame, 99 (1994), 562–572 | DOI

[8] C. Almarcha, J. Quinard, B. Denet, E. Al-Sarraf, J. M. Laugier, E. Villermaux, “Experimental two dimensional cellular flames”, Phys. Fluids, 27:9 (2015), 9–11 | DOI

[9] J. Wongwiwat, J. Gross, P. D. Ronney, “Flame propagation in narrow channels at varying Lewis number”, 25th ICDERS, 2015, 3–8

[10] M. V. Alekseev, M. M. Alekseev, Ye. V. Samsonov, O. Yu. Semenov, I. V. Smirnova, S. Ye. Yakush, “Instability of propane-air mixture flame propagation in a narrow channel”, Proceedings in Cybernetics, 1 (2017), 128–134 | MR

[11] M. Alexeev, V. Borisov, O. Semenov, S. Yakush, “Instability of Laminar Flame Propagation in a Narrow Gap between Parallel Plates”, Proceedings of the 8th European Combustion Meeting ECM2017 (Dubrovnik, Croatia, 2017), 2034–2039

[12] M. M. Alexeev, O. Yu. Semenov, S. E. Yakush, “Experimental study on cellular premixed propane flames in a narrow gap between parallel plates”, Combustion Science and Technology, 191:7 (2019), 1256–1275 | DOI

[13] D. Fernández-Galisteo, V. N. Kurdyumov, P. D. Ronney, “Analysis of premixed flame propagation between two closely-spaced parallel plates”, Combust. Flame, 190 (2018), 133–145 | DOI

[14] M. M. Alekseev, V. E. Borisov, O. Yu. Semenov, S. E. Yakush, “Modelirovanie gorenija v uzkom ploskom kanale”, Preprinty IPM im. M.V. Keldysha, 2016, 134, 32 pp.

[15] V. E. Borisov, S. E. Yakush, “Chislennoe modelirovanie rasprostraneniia metanovogo plameni v zazore mezhdu parallelnymi plastinami”, Preprinty IPM im. M.V. Keldysha, 2019, 004, 20 pp.

[16] S. E. Yakush, V. E. Borisov, Programmnyj kompleks dlya pryamogo chislennogo modelirovaniya trexmernyx turbulentnyx techenij mnogokomponentnoj smesi reagiruyushhix gazov na vysokoproizvoditel'nyx vychislitel'nyx sistemax (ParTCS-3D), Svidetel'stvo o registracii programmy dlya E'VM RU 2018660997, 30.08.2018

[17] V. E. Borisov, A. A. Kuleshov, E. B. Savenkov, S. E. Yakush, “Programmnyj kompleks TCS 3D: matematicheskaya model'”, Preprinty IPM im. M.V. Keldysha, 2015, 006, 20 pp.

[18] V. E. Borisov, A. A. Kuleshov, E. B. Savenkov, S. E. Yakush, Programmnyj kompleks TCS 3D: vychislitel'naya model', Preprinty IPM im. M.V. Keldysha, 2015, 20 pp.

[19] YU. V. Lapin, M. H. Strelets, Vnutrennie techeniya gazovyh smesej, Nauka, M., 1989

[20] M. S. Day, J. B. Bell, “Numerical simulation of laminar reacting flows with complex chemistry”, Combust. Theory Model., 4 (2000), 535–556 | DOI | Zbl

[21] T. Poinsot, D. Veynante, Theoretical, numerical combustion, 2nd Ed, Edwards Inc., Philadelphia, 2005, 522 pp.

[22] S. Gordon, B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations, NASA Report SP-273, 1971

[23] A. Burkat, B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Technion Report TAE 960 and ANL Report ANL-05/20, 2005

[24] J. Bell, M. Day, “Adaptive Methods for Simulation of Turbulent Combustion”, Turbulent Combustion Modeling: Advances, New Trends and perspectives, Chapter 13, Fluid mechanics and its applications, 95, Springer, London, 2010, 201–329

[25] J. B. Bell, D. L. Marcus, “A second-order projection method for variable-density flows”, J. Comput. Phys., 101 (1992), 334–348 | DOI | Zbl

[26] C. W. Shu, “High order weighted essentially non-oscillatory schemes for convection dominated problems”, SIAM Review, 51 (2009), 82–112 | DOI | MR

[27] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskih modelej, Izd-vo MGTU im. N.E. Baumana, M., 2010, 591 pp.

[28] PARAMESH: Parallel Adaptive Mesh Refinement, https://sourceforge.net/projects/paramesh

[29] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, “VODE: a variable coefficient ODE solver”, SIAM J. Sci. Stat. Comp., 10 (1989), 1038–1051 | DOI | MR | Zbl

[30] HYPRE: Scalable Linear Solvers and Multigrid Methods, http://computation.llnl.gov/project/linear_solvers/software.php

[31] HDF5 Tutorial, https://www.hdfgroup.org/HDF5/Tutor/

[32] TecIO Library, http://www.tecplot.com/my/tecio-library/

[33] B. Rogg, “Sensitivity analysis of laminar premixed CH4-air flames using full and reduced kinetic mechanisms”, Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air flames, Lecture Notes in Physics, 384, ed. D. Smooke, Springer Verlag, 1991, 159–192 | DOI

[34] Hybrid supercomputer system K-100