Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_3_a0, author = {V. E. Borisov and S. E. Yakush and E. Ya. Sysoeva}, title = {Numerical simulation of cellular flame propagation in narrow gaps}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--25}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/} }
TY - JOUR AU - V. E. Borisov AU - S. E. Yakush AU - E. Ya. Sysoeva TI - Numerical simulation of cellular flame propagation in narrow gaps JO - Matematičeskoe modelirovanie PY - 2022 SP - 3 EP - 25 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/ LA - ru ID - MM_2022_34_3_a0 ER -
V. E. Borisov; S. E. Yakush; E. Ya. Sysoeva. Numerical simulation of cellular flame propagation in narrow gaps. Matematičeskoe modelirovanie, Tome 34 (2022) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/MM_2022_34_3_a0/
[1] Y. Ju, K. Maruta, “Microscale combustion: Technology development and fundamental research”, Prog. Energy Combust. Sci., 37 (2011), 669–715 | DOI
[2] A. Fan, S. Minaev, E. Sereshchenko, R. Fursenko, S. Kumar, W. Liu, K. Maruta, “Experimental and numerical investigations of flame pattern formations in a radial microchannel”, Proc. Combust. Inst., 32 II, 2009, 3059–3066 | DOI
[3] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of Combustion and Explosions, Plenum, N.Y., 1985, 597 pp. | MR | MR
[4] V. V. Bychkov, M. A. Liberman, “Dynamics and stability of premixed flames”, Phys. Rep., 325 (2000), 115–237 | DOI | MR
[5] M. Matalon, “Intrinsic flame instabilities in premixed and nonpremixed combustion”, Annu. Rev. Fluid Mech., 39 (2007), 163–191 | DOI | MR | Zbl
[6] P. Clavin, G. Searby, Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars, Cambridge Press, Cambridge, UK, 2016 | Zbl
[7] D. Bradley, C. M. Harper, “The development of instabilities in laminar explosion flames”, Combust. Flame, 99 (1994), 562–572 | DOI
[8] C. Almarcha, J. Quinard, B. Denet, E. Al-Sarraf, J. M. Laugier, E. Villermaux, “Experimental two dimensional cellular flames”, Phys. Fluids, 27:9 (2015), 9–11 | DOI
[9] J. Wongwiwat, J. Gross, P. D. Ronney, “Flame propagation in narrow channels at varying Lewis number”, 25th ICDERS, 2015, 3–8
[10] M. V. Alekseev, M. M. Alekseev, Ye. V. Samsonov, O. Yu. Semenov, I. V. Smirnova, S. Ye. Yakush, “Instability of propane-air mixture flame propagation in a narrow channel”, Proceedings in Cybernetics, 1 (2017), 128–134 | MR
[11] M. Alexeev, V. Borisov, O. Semenov, S. Yakush, “Instability of Laminar Flame Propagation in a Narrow Gap between Parallel Plates”, Proceedings of the 8th European Combustion Meeting ECM2017 (Dubrovnik, Croatia, 2017), 2034–2039
[12] M. M. Alexeev, O. Yu. Semenov, S. E. Yakush, “Experimental study on cellular premixed propane flames in a narrow gap between parallel plates”, Combustion Science and Technology, 191:7 (2019), 1256–1275 | DOI
[13] D. Fernández-Galisteo, V. N. Kurdyumov, P. D. Ronney, “Analysis of premixed flame propagation between two closely-spaced parallel plates”, Combust. Flame, 190 (2018), 133–145 | DOI
[14] M. M. Alekseev, V. E. Borisov, O. Yu. Semenov, S. E. Yakush, “Modelirovanie gorenija v uzkom ploskom kanale”, Preprinty IPM im. M.V. Keldysha, 2016, 134, 32 pp.
[15] V. E. Borisov, S. E. Yakush, “Chislennoe modelirovanie rasprostraneniia metanovogo plameni v zazore mezhdu parallelnymi plastinami”, Preprinty IPM im. M.V. Keldysha, 2019, 004, 20 pp.
[16] S. E. Yakush, V. E. Borisov, Programmnyj kompleks dlya pryamogo chislennogo modelirovaniya trexmernyx turbulentnyx techenij mnogokomponentnoj smesi reagiruyushhix gazov na vysokoproizvoditel'nyx vychislitel'nyx sistemax (ParTCS-3D), Svidetel'stvo o registracii programmy dlya E'VM RU 2018660997, 30.08.2018
[17] V. E. Borisov, A. A. Kuleshov, E. B. Savenkov, S. E. Yakush, “Programmnyj kompleks TCS 3D: matematicheskaya model'”, Preprinty IPM im. M.V. Keldysha, 2015, 006, 20 pp.
[18] V. E. Borisov, A. A. Kuleshov, E. B. Savenkov, S. E. Yakush, Programmnyj kompleks TCS 3D: vychislitel'naya model', Preprinty IPM im. M.V. Keldysha, 2015, 20 pp.
[19] YU. V. Lapin, M. H. Strelets, Vnutrennie techeniya gazovyh smesej, Nauka, M., 1989
[20] M. S. Day, J. B. Bell, “Numerical simulation of laminar reacting flows with complex chemistry”, Combust. Theory Model., 4 (2000), 535–556 | DOI | Zbl
[21] T. Poinsot, D. Veynante, Theoretical, numerical combustion, 2nd Ed, Edwards Inc., Philadelphia, 2005, 522 pp.
[22] S. Gordon, B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations, NASA Report SP-273, 1971
[23] A. Burkat, B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Technion Report TAE 960 and ANL Report ANL-05/20, 2005
[24] J. Bell, M. Day, “Adaptive Methods for Simulation of Turbulent Combustion”, Turbulent Combustion Modeling: Advances, New Trends and perspectives, Chapter 13, Fluid mechanics and its applications, 95, Springer, London, 2010, 201–329
[25] J. B. Bell, D. L. Marcus, “A second-order projection method for variable-density flows”, J. Comput. Phys., 101 (1992), 334–348 | DOI | Zbl
[26] C. W. Shu, “High order weighted essentially non-oscillatory schemes for convection dominated problems”, SIAM Review, 51 (2009), 82–112 | DOI | MR
[27] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskih modelej, Izd-vo MGTU im. N.E. Baumana, M., 2010, 591 pp.
[28] PARAMESH: Parallel Adaptive Mesh Refinement, https://sourceforge.net/projects/paramesh
[29] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, “VODE: a variable coefficient ODE solver”, SIAM J. Sci. Stat. Comp., 10 (1989), 1038–1051 | DOI | MR | Zbl
[30] HYPRE: Scalable Linear Solvers and Multigrid Methods, http://computation.llnl.gov/project/linear_solvers/software.php
[31] HDF5 Tutorial, https://www.hdfgroup.org/HDF5/Tutor/
[32] TecIO Library, http://www.tecplot.com/my/tecio-library/
[33] B. Rogg, “Sensitivity analysis of laminar premixed CH4-air flames using full and reduced kinetic mechanisms”, Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air flames, Lecture Notes in Physics, 384, ed. D. Smooke, Springer Verlag, 1991, 159–192 | DOI
[34] Hybrid supercomputer system K-100