Regularized difference scheme for solving hydrodynamic problems
Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 85-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a three-dimensional hydrodynamic model of the movement of an aqueous medium, which includes the Navier – Stokes equations of motion, including the regularized continuity equation, taking into account the effect of the impurity on the density of the aquatic environment. The approximation of the equations for calculating the velocity field of the aquatic environment with respect to spatial variables was carried out on the basis of splitting schemes for physical processes taking into account the filling factors of control plots, which made it possible to take into account the complex geometry of the coastline and the bottom of the reservoir, as well as to improve the accuracy of modeling. Calculation of the pressure field using a regularizer in the continuity equation made it possible to increase the accuracy of modeling: in the developed model, pressure cannot propagate faster than the velocity of the shock front (in the linear approximation of the speed of sound). The application of this approach also makes it possible to reduce the computational complexity of solving grid equations for the problem of calculating pressure due to the presence of a diagonal dominance in the matrix of coefficients. Numerical experiments were carried out to simulate the movement of the aquatic environment in the estuary area and the process of mixing waters in the presence of a significant density gradient in the aquatic environment.
Keywords: model of hydrodynamics, continuity equation, regularization, Upwind Leapfrog difference scheme, Standard Leapfrog difference scheme.
@article{MM_2022_34_2_a6,
     author = {A. I. Sukhinov and A. E. Chistyakov and I. Y. Kuznetsova and A. M. Atayan and A. V. Nikitina},
     title = {Regularized difference scheme for solving hydrodynamic problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_2_a6/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - I. Y. Kuznetsova
AU  - A. M. Atayan
AU  - A. V. Nikitina
TI  - Regularized difference scheme for solving hydrodynamic problems
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 85
EP  - 100
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_2_a6/
LA  - ru
ID  - MM_2022_34_2_a6
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A I. Y. Kuznetsova
%A A. M. Atayan
%A A. V. Nikitina
%T Regularized difference scheme for solving hydrodynamic problems
%J Matematičeskoe modelirovanie
%D 2022
%P 85-100
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_2_a6/
%G ru
%F MM_2022_34_2_a6
A. I. Sukhinov; A. E. Chistyakov; I. Y. Kuznetsova; A. M. Atayan; A. V. Nikitina. Regularized difference scheme for solving hydrodynamic problems. Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 85-100. http://geodesic.mathdoc.fr/item/MM_2022_34_2_a6/

[1] B. N. Chetverushkin, “Kinetic models for supercomputer simulation continuous mechanic problems”, Math. Models Comput. Simul., 7:6 (2015), 531–539 | DOI | MR | Zbl

[2] B. N. Chetverushkin, I. A. Znamenskaya, A. E. Lutsky, Y. V. Khankhasaeva, “Numerical Simulation of the Interaction and Evolution of Discontinuities in a Channel Based on a Compact Form of Quasi-Gasdynamic Equations”, Math. Models Comput. Simul., 13:1 (2021), 26–36 | DOI | DOI | Zbl

[3] M. V. Yakobovskiy, S. K. Grigorjev, “Algoritm garantirovannoy generatsii tetraedralnoi setki proyektsionnym metodom”, Keldysh Institute preprints, 2018, 109, 18 pp. | DOI

[4] B. N. Chetverushkin, M. V. Yakobovskiy, “Vychislitelnye algoritmy i arkhitektura sistem vysokoi proizvoditelnosti”, Keldysh Institute preprints, 2018, 052, 12 pp. | DOI

[5] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Two-Dimensional Euler Equations”, Math. Models Comput. Simul., 13 (2021), 897–906 | DOI | DOI | MR | Zbl

[6] B. N. Chetverushkin, “Resolution limits of continuous media models and their mathematical formulations”, Math. Models Comput. Simul., 5:3 (2013), 266–279 | DOI | MR

[7] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, V. V. Sidoryakina, S. V. Protsenko, “Accounting Method of Filling Cells for the Solution of Hydrodynamics Problems with a Complex Geometry of the Computational Domain”, Math. Models Comput. Simul., 12 (2020), 232–245 | DOI | DOI | MR | Zbl

[8] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, “Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers”, Computer Research and Modeling, 11:5 (2019), 833–848 | DOI | MR

[9] A. I. Sukhinov, I. Yu. Kuznetsova, A. E. Chistyakov, E. A. Protsenko, Y. V. Belova, “Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Peclet numbers”, Computational Continuum Mechanics, 13 (2020), 437–448 | DOI

[10] A. I. Sukhinov, A. E. Chistyakov, V. V. Sidoryakina, E. A. Protsenko, “Economical Explicit-Implicit Schemes for Solving Multidimensional Diffusion-Convection Problems”, Journal of Applied Mechanics and Technical Physicsthis, 61:7 (2020), 1257–1267 | DOI | Zbl

[11] Skorost zvuka, Bolshaia rossiiskaia entsiklopediia, https://bigenc.ru/physics/text/3624120

[12] V. N. Mikhaylov, S. A. Dobrolyubov, Gidrologiya, Direkt-Media, M.–Berlin, 2017, 752 pp.

[13] C.-T. Chen, F. J. Millero, “Speed of sound in seawater at high pressures”, J. of the Acoustical Society of America, 62:5 (1977), 1129–1135 | DOI

[14] A. A. Samarskiy, P. N. Vabishchevich, Chislennye metody resheniia zadach konvektsii-diffuzii, URSS, M., 2009, 248 pp.

[15] O. M. Belotserkovskii, V. A. Gushchin, V. V. Shchennikov, “Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid”, U.S.S.R. Comput. Math. Math. Phys., 15:1 (1975), 190–200 | DOI | Zbl

[16] A. A. Samarskiy, E. S. Nikolayev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[17] A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, E. F. Timofeeva, “Predictive modelling of coastal hydrophysical processes in a multiprocession system based on explicit schemes”, Math. Models Comput. Simul., 10:5 (2018), 648–658 | DOI | MR | MR | Zbl

[18] A. I. Sukhinov, A. E. Chistyakov, I. Y. Kuznetsova, E. A. Protsenko, “Modelling of suspended particles motion in channel”, Journal of Physics: Conf. Series, 1479:1 (2020), 012082 | DOI