Selection of information resource sales prices as an optimal management problem
Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 71-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that the model of interaction between the seller and the market, based on the properties of macrosystems, has advantages over diffusion models in problems of choosing optimal prices. The problems of choosing the selling prices of information resources are considered and solved taking into account the saturation of the market, the dependence of the sales price corresponding to the maximum income of the manufacturer for the monopoly and competitive markets is found, the conditions for the stability of the monopoly collusion and the duration of sales corresponding to the maximum of the average profit are obtained.
Keywords: welfare function, demand function, income maximization, price selection, payback condition, resource estimates, competitive market, monopoly market.
Mots-clés : diffusion of innovation
@article{MM_2022_34_2_a5,
     author = {O. S. Elistratova and A. M. Tsirlin},
     title = {Selection of information resource sales prices as an optimal management problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_2_a5/}
}
TY  - JOUR
AU  - O. S. Elistratova
AU  - A. M. Tsirlin
TI  - Selection of information resource sales prices as an optimal management problem
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 71
EP  - 84
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_2_a5/
LA  - ru
ID  - MM_2022_34_2_a5
ER  - 
%0 Journal Article
%A O. S. Elistratova
%A A. M. Tsirlin
%T Selection of information resource sales prices as an optimal management problem
%J Matematičeskoe modelirovanie
%D 2022
%P 71-84
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_2_a5/
%G ru
%F MM_2022_34_2_a5
O. S. Elistratova; A. M. Tsirlin. Selection of information resource sales prices as an optimal management problem. Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 71-84. http://geodesic.mathdoc.fr/item/MM_2022_34_2_a5/

[1] V. I. Solovev, Strategiia i taktika konkurencii na rynke programmnogo obespecheniia: Opyt ekonomiko-matematicheskogo modelirovaniia, Vega Info, M., 2010, 200 pp.

[2] A. V. Silakov, V. V. Silakova, “Opisanie zhiznennogo tsikla tovara na osnove modeli diffuzii innovatsij”, Marketing i marketingovye issledovaniia, 2009, no. 04, 250–263

[3] C. Kalish, S. K. Sen, “Diffusion models and the marketing mix for single products”, Innovation Diffusion Models of New Product Acceptance, eds. V. Mahajan, Y. Wind, Ballinger Publishing Company, Cambridge, USA, 1986, 87–115

[4] V. Mahajan, E. Muller, F. M. Bass, “New product diffusion models”, Handbooks in Operations Research and Management Science, eds. J. Eliashberg, G. L. Lilien, Elsevier Science Publishers, NY, USA, 1993

[5] V. Mahajan, E. Muller, F. M. Bass, “Diffusion of new products: Empirical generalizations and managerial uses”, Marketing Science, 14 (1995) | DOI

[6] V. Mahajan, E. Muller, Y. Wind, New-Product Diffusion Models, Kluwer Acad. Publ., Dordrecht, Holland, 2000

[7] P. Turchin, Historical Dynamics: Why States Rise and Fall, Princeton University Press, Princeton, USA, 2003 | Zbl

[8] R. Chatterjee, J. Eliashberg, V. Rao, “Dynamic models incorporating competition”, New-Product Diffusion Models, eds. V. Mahajan, E. Muller, Y. Wind, Kluwer Academic Publishers, Dordrecht, Holl., 2000

[9] T. V. Marshalkina, “Modeli prognozirovaniia sprosa na innovatsionnuyu produktsiiu”, Vestnik finansovogo universiteta, 2015, no. 6, 171–178

[10] V. F. Minakov, T. A. Makarchuk, A. V. Artemev, “Model Bassa v upravlenii innovatsionnym razvitiem otrasli svyazi Rossii”, Kachestvo, innovatsii, obrazovanie, 2013, no. 12, 116–117

[11] N. Meade, T. Islamb, Modelling and forecasting the diffusion of innovation, A 25-year review, 2018

[12] G. E. Fruchter, Van den Bulte, “Why the Generalized Bass Model leads to odd optimal advertising policies”, International Journal of Research in Marketing, 2011

[13] S. Baranovskij, A. Puzyrevskaya, “Imitatsionnoe modelirovanie diffuzii innovatsionnogo produkta”, Innovatsii i investitsii, 2019, no. 8, 38–42

[14] K. Lyytinen, J. Damsgaard, What's Wrong with the Diffusion of Innovation Theory?, Working Conference on Diffusing Software Product and Process Innovations (2015)

[15] R. L. Boldyrev, I. B. Russman, I. N. Shchepina, “Modelirovanie diffuzii novovvedenij s uchetom tsenovogo faktora”, Materialy konferentsii Matematicheskoe modelirovanie sistem: metody, prilozheniia i sredstva, 1998, 53–58

[16] M. Lihnerovich, Model ekonomicheskogo obmena (ekonomika i termodinamika). Matematicheskaia ekonomika, ed. Mitiagin B.S., Mir, M., 1974

[17] A. De Vos, “Endoreversible the economics”, Energy Conversion Management, 36:1 (1995)

[18] R. U. Ayres, K. A. Martinas, Waste Potential Entropy: The Ultimate Ecotoxic?, Economie Appliquee, XLVIII:2 (1995), 95–120

[19] A. Brody, K. A. Martinas, K. Sajo, “Essay on Macroeconomics”, Acta Oeconomica, 35:3-4 (1985), 337–343

[20] A. M. Tsirlin, Optimizatsionnaia termodinamika ekonomicheskikh sistem, Nauchnyj mir, M., 2011, 198 pp.

[21] A. A. Petrov, Ekonomika. Modeli. Vychislitelnyj eksperiment, Nauka, M., 1996, 254 pp.

[22] I. G. Pospelov, “Dinamicheskoe opisanie kollektivnogo povedeniia na rynke”, Matematicheskoe modelirovanie: Metody opisaniia i issledovaniia slozhnyh system, eds. Samarskij A.A., Moiseev N.N., Petrov A.A., Nauka, M., 1989

[23] G. Renshaw, Maths for Economics, Oxford Univ. Press, New York, 2005, 516–526

[24] C. W. Cobb, P. H. Douglas, “A theory of production”, The American Economic Review, 18:1 (1928), 139–165

[25] M. I. Bakanov, M. V. Melnik, A. D. Sheremet, Teoriia ekonomicheskogo analiza, Finansy i statistika, M., 2007, 536 pp.