Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_2_a3, author = {N. S. Zhdanova and I. V. Abalakin and O. V. Vasilyev}, title = {Generalized {Brinkman} volume penalization method for compressible flows around moving obstacles}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {41--57}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/} }
TY - JOUR AU - N. S. Zhdanova AU - I. V. Abalakin AU - O. V. Vasilyev TI - Generalized Brinkman volume penalization method for compressible flows around moving obstacles JO - Matematičeskoe modelirovanie PY - 2022 SP - 41 EP - 57 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/ LA - ru ID - MM_2022_34_2_a3 ER -
%0 Journal Article %A N. S. Zhdanova %A I. V. Abalakin %A O. V. Vasilyev %T Generalized Brinkman volume penalization method for compressible flows around moving obstacles %J Matematičeskoe modelirovanie %D 2022 %P 41-57 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/ %G ru %F MM_2022_34_2_a3
N. S. Zhdanova; I. V. Abalakin; O. V. Vasilyev. Generalized Brinkman volume penalization method for compressible flows around moving obstacles. Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 41-57. http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/
[1] U. K. Kaul, “Three-dimensional elliptic grid generation with fully automatic boundary constraints”, Journal of Computational Physics, 229 (2010), 5966–5979 | DOI | Zbl
[2] V. A. Garanzha, L. N. Kudryavtseva, V. O. Tsvetkova, “Hybrid Voronoi Mesh Generation: Algorithms and Unsolved Problems”, Comput. Math. Math. Phys., 59 (2019), 1945–1964 | DOI | MR | MR | Zbl
[3] C. S. Peskin, “The immersed boundary method”, Acta Numerica, 2002, 479–517 | DOI | Zbl
[4] R. Mittal, G. Iaccarino, “Immersed boundary methods”, Annual Rev. of Fluid Mechanics, 37 (2005), 239–261 | DOI | Zbl
[5] R. Steijl, G. Barakos, “Sliding, mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics”, Intern. J. for Numerical Methods in Fluids, 58:5 (2008), 527–549 | DOI | Zbl
[6] H. Pomin, S. Wagner, “Aeroelastic analysis of helicopter rotor blades on deformable chimera grids”, Journal of Aircraft, 41:3 (2004), 577–584 | DOI
[7] I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, V. A. Vershkov, B. S. Kritsky, R. M. Mirgazov, “Humerical simulation of flow around rigid rotor in forward flight”, Fluid Dynamics, 55:4 (2020), 534–544 | DOI
[8] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, MM, 6:6 (2014), 612–621 | Zbl
[9] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations”, Journal of Computational Physics, 161 (2000), 35–60 | DOI | MR | Zbl
[10] E. Arquis, J. P. Caltagirone, “Sur les conditions hydrodynamiques au voisinage d'une inter-face milieu fluide-milieu poreux: Application à la convection naturelle”, Comptes Rendus de l'Académie des Sciences Series II, 299 (1984), 1–4
[11] P. Angot, C. Bruneau, P. Fabrie, “A penalization method to take into account obstacles in viscous flows”, Numer. Math., 81 (1999), 497–520 | DOI | MR | Zbl
[12] G. Carbou, P. Fabrie, “Boundary layer for a penalization method for viscous incompressible flow”, Advances in Difference Equations, 8 (2003), 1453–1480 | Zbl
[13] N. K. R. Kevlahan, O. V. Vasilyev, “An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers”, SIAM Journal on Scientific Computing, 26:6 (2005), 1894–1915 | DOI | MR | Zbl
[14] Q. Liu, O. V. Vasilyev, “Brinkman penalization method for compressible flows in complex geometries”, Journal of Computational Physics, 227:2 (2007), 946–966 | DOI | MR | Zbl
[15] Y. Bae, Y. Moon, “On the use of Brinkman Penalization Method for computation of acoustic scattering from complex boundaries”, Computers and Fluids, 55 (2012), 48–56 | DOI | MR | Zbl
[16] R. Komatsu, W. Iwakami, Y. Hattori, “Direct numerical simulation of aeroacoustic sound by volume penalization method”, Computers and Fluids, 130 (2016), 24–36 | DOI | MR | Zbl
[17] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fluids, 81:6 (2016), 331–356 | DOI | MR
[18] O. Boiron, G. Chiavassa, R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Comput. Fluids, 38:3 (2009), 703–714 | DOI | MR | Zbl
[19] A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations”, Lobachevskii Journal of Mathematics, 39:4 (2018), 524–532 | DOI | MR | Zbl
[20] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Computer Physics Communications, 271 (2022), 108231 | DOI | MR
[21] K. W. Tam, J. C. Hardin (Eds.), Second computational aeroacoustics (CAA) workshop on benchmark problems, NASA Conf. Publ., No 3352, Langley Res. Center, Hampton, VA, 1997
[22] I. Abalakin, N. Zhdanova, T. Kozubskaya, “Immersed Boundary Penalty Method for Compressible Flows Over Moving Obstacles”, Proc. of 6th European Conf. on Comp. Mechanics and 7th European Conf. on Comp. Fluid Dynamics (11–15 June, Glasgow, UK, 2018)