Generalized Brinkman volume penalization method for compressible flows around moving obstacles
Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 41-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents a Galilean-invariant generalization of the Brinkman volume penalization method for compressible flows, which extends the applicability of the method to problems with moving obstacles. The developed method makes it possible to carry out simulations on non-body fitted meshes of arbitrary structure, including completely unstructured computational grids. The efficiency of the Galilean-invariant generalization of the Brinkman volume penalization method for compressible flows around moving obstacles is demonstrated for a number of benchmark flows such as one-dimensional acoustic pulse reflection from a plane stationary and moving surface, the 2-D acoustic scattering by the cylinder generated by localized acoustic source, and subsonic viscous flow around an oscillating cylinder. The numerical results agree well with the reference solutions, theoretical estimates of the convergence of the method, and confirm the Galilean invariance of the proposed formulation.
Keywords: unstructured meshes, immersed boundary method, volume penalization method, fictitious domain method, flow around moving obstacles.
@article{MM_2022_34_2_a3,
     author = {N. S. Zhdanova and I. V. Abalakin and O. V. Vasilyev},
     title = {Generalized {Brinkman} volume penalization method for compressible flows around moving obstacles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--57},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/}
}
TY  - JOUR
AU  - N. S. Zhdanova
AU  - I. V. Abalakin
AU  - O. V. Vasilyev
TI  - Generalized Brinkman volume penalization method for compressible flows around moving obstacles
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 41
EP  - 57
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/
LA  - ru
ID  - MM_2022_34_2_a3
ER  - 
%0 Journal Article
%A N. S. Zhdanova
%A I. V. Abalakin
%A O. V. Vasilyev
%T Generalized Brinkman volume penalization method for compressible flows around moving obstacles
%J Matematičeskoe modelirovanie
%D 2022
%P 41-57
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/
%G ru
%F MM_2022_34_2_a3
N. S. Zhdanova; I. V. Abalakin; O. V. Vasilyev. Generalized Brinkman volume penalization method for compressible flows around moving obstacles. Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 41-57. http://geodesic.mathdoc.fr/item/MM_2022_34_2_a3/

[1] U. K. Kaul, “Three-dimensional elliptic grid generation with fully automatic boundary constraints”, Journal of Computational Physics, 229 (2010), 5966–5979 | DOI | Zbl

[2] V. A. Garanzha, L. N. Kudryavtseva, V. O. Tsvetkova, “Hybrid Voronoi Mesh Generation: Algorithms and Unsolved Problems”, Comput. Math. Math. Phys., 59 (2019), 1945–1964 | DOI | MR | MR | Zbl

[3] C. S. Peskin, “The immersed boundary method”, Acta Numerica, 2002, 479–517 | DOI | Zbl

[4] R. Mittal, G. Iaccarino, “Immersed boundary methods”, Annual Rev. of Fluid Mechanics, 37 (2005), 239–261 | DOI | Zbl

[5] R. Steijl, G. Barakos, “Sliding, mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics”, Intern. J. for Numerical Methods in Fluids, 58:5 (2008), 527–549 | DOI | Zbl

[6] H. Pomin, S. Wagner, “Aeroelastic analysis of helicopter rotor blades on deformable chimera grids”, Journal of Aircraft, 41:3 (2004), 577–584 | DOI

[7] I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, V. A. Vershkov, B. S. Kritsky, R. M. Mirgazov, “Humerical simulation of flow around rigid rotor in forward flight”, Fluid Dynamics, 55:4 (2020), 534–544 | DOI

[8] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, MM, 6:6 (2014), 612–621 | Zbl

[9] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations”, Journal of Computational Physics, 161 (2000), 35–60 | DOI | MR | Zbl

[10] E. Arquis, J. P. Caltagirone, “Sur les conditions hydrodynamiques au voisinage d'une inter-face milieu fluide-milieu poreux: Application à la convection naturelle”, Comptes Rendus de l'Académie des Sciences Series II, 299 (1984), 1–4

[11] P. Angot, C. Bruneau, P. Fabrie, “A penalization method to take into account obstacles in viscous flows”, Numer. Math., 81 (1999), 497–520 | DOI | MR | Zbl

[12] G. Carbou, P. Fabrie, “Boundary layer for a penalization method for viscous incompressible flow”, Advances in Difference Equations, 8 (2003), 1453–1480 | Zbl

[13] N. K. R. Kevlahan, O. V. Vasilyev, “An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers”, SIAM Journal on Scientific Computing, 26:6 (2005), 1894–1915 | DOI | MR | Zbl

[14] Q. Liu, O. V. Vasilyev, “Brinkman penalization method for compressible flows in complex geometries”, Journal of Computational Physics, 227:2 (2007), 946–966 | DOI | MR | Zbl

[15] Y. Bae, Y. Moon, “On the use of Brinkman Penalization Method for computation of acoustic scattering from complex boundaries”, Computers and Fluids, 55 (2012), 48–56 | DOI | MR | Zbl

[16] R. Komatsu, W. Iwakami, Y. Hattori, “Direct numerical simulation of aeroacoustic sound by volume penalization method”, Computers and Fluids, 130 (2016), 24–36 | DOI | MR | Zbl

[17] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fluids, 81:6 (2016), 331–356 | DOI | MR

[18] O. Boiron, G. Chiavassa, R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Comput. Fluids, 38:3 (2009), 703–714 | DOI | MR | Zbl

[19] A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations”, Lobachevskii Journal of Mathematics, 39:4 (2018), 524–532 | DOI | MR | Zbl

[20] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Computer Physics Communications, 271 (2022), 108231 | DOI | MR

[21] K. W. Tam, J. C. Hardin (Eds.), Second computational aeroacoustics (CAA) workshop on benchmark problems, NASA Conf. Publ., No 3352, Langley Res. Center, Hampton, VA, 1997

[22] I. Abalakin, N. Zhdanova, T. Kozubskaya, “Immersed Boundary Penalty Method for Compressible Flows Over Moving Obstacles”, Proc. of 6th European Conf. on Comp. Mechanics and 7th European Conf. on Comp. Fluid Dynamics (11–15 June, Glasgow, UK, 2018)