Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_2_a1, author = {A. E. Lutsky and A. V. Severin and Ya. V. Khankhasaeva}, title = {Calculation of high-speed flows based on a hyperbolic quasi-gas dynamic system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {17--31}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_2_a1/} }
TY - JOUR AU - A. E. Lutsky AU - A. V. Severin AU - Ya. V. Khankhasaeva TI - Calculation of high-speed flows based on a hyperbolic quasi-gas dynamic system JO - Matematičeskoe modelirovanie PY - 2022 SP - 17 EP - 31 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_2_a1/ LA - ru ID - MM_2022_34_2_a1 ER -
%0 Journal Article %A A. E. Lutsky %A A. V. Severin %A Ya. V. Khankhasaeva %T Calculation of high-speed flows based on a hyperbolic quasi-gas dynamic system %J Matematičeskoe modelirovanie %D 2022 %P 17-31 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_2_a1/ %G ru %F MM_2022_34_2_a1
A. E. Lutsky; A. V. Severin; Ya. V. Khankhasaeva. Calculation of high-speed flows based on a hyperbolic quasi-gas dynamic system. Matematičeskoe modelirovanie, Tome 34 (2022) no. 2, pp. 17-31. http://geodesic.mathdoc.fr/item/MM_2022_34_2_a1/
[1] S. Surzhikov, “Numerical Interpretation of Experimental Data on Aerodynamics of the HB-2 Model Using Computer Codes USTFEN and PERAT-3D”, Physical-Chemical Kinetics in Gas Dynamics, 21:1 (2020)
[2] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “A Hybrid Numerical Flux for Solving the Problems of a Supersonic Flow Around Solid Bodies”, Math. Models. Comput. Simul., 13:6 (2021), 1116–1121 | DOI | MR | Zbl
[3] S. T. Surzhikov, Radiatsionnaia gazovaia dinamika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli, IPMekh RAN, M., 2013
[4] T.G. Elizarova, B.N. Chetverushkin, “On a computational algorithm for calculating gas dynamic flows”, Dokl. Akad. Nauk SSSR, 279:1 (1984), 80–84
[5] B. N. Chetnerushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd. MGU, M., 1999
[6] T. G. Elizarova, Kvazigazodinamicheskie uravneniia i metody rascheta viazkikh techenii, Nauchnyi mir, M., 2007
[7] B. Chetverushkin, N. D'Ascenzo, S. Ishanov, V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamic for high performance computing systems”, Rus. J. Num. Analysis. Math. Modelling, 30 (2015), 27–36 | MR | Zbl
[8] B. N. Chetverushkin, N. D'Ascenzo, A. V. Saveliev, V. I. Saveliev, “Simulation of astrophysical phenomena on the basis of high-performance computations”, Dokl. Math., 95:1 (2017), 68–71 | DOI | MR | Zbl
[9] A. E. Lutskii, B. N. Chetverushkin, “Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas”, Differential Equations, 55:4 (2019), 575–580 | DOI | MR | Zbl
[10] B. N. Chetverushkin, I. A. Znamenskaya, A. E. Lutsky, Ya. V. Khankhasaeva, “Numerical Simulation of the Interaction and Evolution of Discontinuities in a Channel Based on a Compact Form of Quasi-Gasdynamic Equations”, Math. Models Comput. Simul., 13:1 (2021), 26–36 | DOI | MR | Zbl
[11] I. A. Ivakhnenko, S. V. Polyakov, B. N. Chetverushkin, “Quasi-hydrodynamic model and small scale turbulence”, Math. Models Comput. Simul., 1:1 (2009), 44–50 | DOI | MR | Zbl
[12] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9–13 July 2012)
[13] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlia rascheta trekhmernykh turbulentnykh techenii viazkogo szhimaemogo gaza na vysokoproizvoditelnykh vychislitelnykh sistemakh, Svidetelstvo o registratsii programmy dlia EVM RU 2019667338, 23.12.2019
[14] John A. Tirpak, “Another decade of enhancements will give the B-52 three more decades of power”, Air Force Magazine, 2020, Oct 1
[15] K. P. Petrov, Aerodinamika prosteishikh form, Fizmatlit, M., 1998, 428 pp.
[16] J. L. Wagner, Experimental studies of unstart dynamics in inlet/isolator configurations in a Mach 5 flow, PhD Thesis, The University of Texas at Austin, 2009
[17] I. Jang, R. Pecnik, P. Moin, “A numerical study of the unstart event in an inlet/isolator model”, Center for Turbulence Research Annual Research Briefs, 2010, 93–103
[18] V. T. Zhukov, K. V. Manukivskii, N. D. Novikova, Y. G. Rykov, O. B. Feodoritova, “Issledovanie kartiny techeniia v modelnom trakte dvigatelia vysokoskorostnogo letatelnogo apparata”, Keldysh Institute Preprints, 2015, 005, 23 pp.
[19] V. E. Borisov, I. Y. Kudryashov, A. E. Lutsky, “Numerical simulation of the pseudo-shock region formation in the channel”, Keldysh Institute Preprints, 2016, 002, 24 pp.
[20] R. K. Seleznev, “Validation of 3D model by the example of a supersonic inlet-isolator”, J. Phys. Conf. Ser., 1009 (2018), 012031 | DOI
[21] R. Seleznev, “The Study of the Flow Structure in the Scramjet Inlet-Isolator with Throttle”, Physical-Chemical Kinetics in Gas Dynamics, 20:3 (2019)