Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach
Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 59-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Molecular dynamics (MD) modeling of the thermophysical properties of pure metallic gold (Au) and hysteresis is considered in order to study its behavior during melting-crystallization phase transformations, i.e. in the transition from solid to liquid. The results of computational experiments are presented, in which the temperature dependences of a number of thermophysical characteristics of the metal are obtained. The possibility of the formation of highly superheated metastable states of the solid phase upon rapid heating of Au has been confirmed.
Keywords: molecular dynamics modeling, thermophysical properties, phase transitions, hysteresis.
@article{MM_2022_34_1_a4,
     author = {V. I. Mazhukin and O. N. Koroleva and A. V. Shapranov and M. M. Demin and A. A. Aleksashkina},
     title = {Determination of thermal properties of gold in the region of melting-crystallization phase transition. {Molecular} dynamic approach},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--80},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - O. N. Koroleva
AU  - A. V. Shapranov
AU  - M. M. Demin
AU  - A. A. Aleksashkina
TI  - Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 59
EP  - 80
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/
LA  - ru
ID  - MM_2022_34_1_a4
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A O. N. Koroleva
%A A. V. Shapranov
%A M. M. Demin
%A A. A. Aleksashkina
%T Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach
%J Matematičeskoe modelirovanie
%D 2022
%P 59-80
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/
%G ru
%F MM_2022_34_1_a4
V. I. Mazhukin; O. N. Koroleva; A. V. Shapranov; M. M. Demin; A. A. Aleksashkina. Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 59-80. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/

[1] Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W. Ager, D. C. Chrzan, E. E. Haller, “Large melting point hysteresis of Ge nanocrystals embedded in SiO2”, PRL, 97:13 (2006), 155701

[2] H. K. Christenson, “Confinement effects on freezing and melting”, J. Phys. Condens. Matter, 13 (2001), R95–R133 | DOI

[3] A. L. Pirozerski, O. I. Smirnova, A. I. Nedbai, O. L. Pirozerskaya, N. A. Grunina, V. M. Mikushev, “Peculiarities of melting and crystallization of n-decane in a porous glass”, Phys. Let. A, 383 (2019), 125872 | DOI

[4] K. K. Nanda, “Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles”, Appl. Phys. Lett., 87 (2005), 021909 | DOI

[5] V. D. Aleksandrov, V. A. Postnikov, “The Effect of Sample Mass on the Crystallization Su-percooling in Bismuth Melt”, Technical Physics Letters, 29:4 (2003), 287–290 | DOI

[6] T. T. Järvi, A. Kuronen, K. Meinander, K. Nordlund, K. Albe, “Contact epitaxy by deposition of Cu, Ag, Au, Pt, and Ni nanoclusters on (100) surfaces: Size limits and mechanisms”, Phys. Rev. B, 75:11 (2007), 115422 | DOI

[7] J-P. Borel, “Termodynamical size effect and the structure of metalic clusters”, Surf. Sci., 106 (1981), 1–9 | DOI

[8] D. R. Uhlmann, “On the internal nucleation of melting”, Journal of Non-Crystalline Solids, 41 (1980), 347–357 | DOI

[9] R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. M. Penisson, A. Bourret, “Surface melting enhanced by curvature effects”, Surf. Sci., 303:1–2 (1994), 231–246 | DOI

[10] K. F. Kelton, “Crystal Nucleation in Liquids and Glasses”, Solid State Physics, 45 (1991), 75–177 | DOI

[11] V. I. Mazhukin, A. V. Shapranov, M. M. Demin, N. A. Kozlovskaya, “Temperature Dependence of the Kinetics Rate of the Melting and Crystallization of Aluminum”, Bulletin of the Lebedev Physics Institute, 43:9 (2016), 283–286 | DOI

[12] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin, “Kinetic Melting and Crystallization Stages of Strongly Superheated and Supercooled Metals”, Math. Mod. Comp. Simul., 9:4 (2017), 448–456 | DOI | MR

[13] Lingkang Wu, Yiying Zhu, Hao Wang, Mo Li, “Crystal/melt coexistence in fcc and bcc metals: a molecular-dynamics study of kinetic coefficients”, IOP: Modelling and Simulation in Materials Science and Engineering, 29:6 (2021), 065016 | DOI

[14] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, O. N. Koroleva, “Mathematical formulation of a kinetic version of Stefan problem for heterogeneous melting/crystallization of metals”, Math. Montis, 36 (2016), 58–77 | Zbl

[15] Zhong-Li Liu, Jun-Sheng Sun, Rui Li, Xiu-Lu Zhang, Ling-Cang Cai, “Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold”, Commun. Theor. Phys., 65 (2016), 613–616 | DOI

[16] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation”, Phys. Rev. B, 65 (2002), 092103 | DOI

[17] L. A. Borynyak, A. P. Chernyshev, “Temperaturnyj gisterezis pri plavlenii i kristallizacii nanoobektov”, Nauchnyj vestnik NGTU, 2014, no. 1 (54), 172–179

[18] V. D. Aleksandrov, E. A. Pokintelicza, A. Yu. Sobolev, “Thermal hysteresis during the melting and crystallization of macroobjects”, Technical Physics, 62:5 (2017), 741–744 | DOI

[19] L. J. Lewis, P. Jensen, J.-L. Barrat, “Melting, freezing, and coalescence of gold nanoclusters”, Phys. Rev. B, 56:4 (1997), 1–12 | DOI

[20] S. N. Luo, T. J. Ahrens, T. Çağ{\i}n, A. Strachan, W. A. Goddard, D. C. Swift, “Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments”, Phys. Rev. B, 68:13 (2003), 134206 | DOI

[21] Q. S. Mei, K. Lu, “Melting and superheating of crystalline solids: from bulk to nanocrystals”, Progr. Mater. Sci., 52:8 (2007), 1175–1262 | DOI

[22] S. Williamson, G. Mourou, J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum”, Phys. Rev. Let., 52:26 (1984), 2364–2367 | DOI

[23] S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, “How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis”, Chem. Phys. Chem., 18:9 (2017), 1012–1019 | DOI

[24] N. Elahi, M. Kamali, M. H. Baghersad, “Recent biomedical applications of gold nanoparticles: A review”, Talanta, 184 (2018), 537–556 | DOI

[25] X. Zhang, “Gold Nanoparticles: Recent Advances in the Biomedical Applications”, Cell Biochemistry and Biophysics, 72:3 (2015), 771–775 | DOI

[26] K. Maximova, A. Aristov, M. Sentis, A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water”, Nanotechnology, 26:6 (2015), 065601 | DOI

[27] V. I. Mazhukin, “Kinetics and Dynamics of Phase Transformations in Metals Under Action of Ultra-Short High-Power Laser Pulses”, Laser Pulses Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 544 pp.

[28] N. Ashkroft, N. Mermin, Solid state physics, Saunders College Publishing, NY, 1976

[29] Z. Tong, S. Li, X. Ruan, H. Bao, “Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals”, Phys. Rev. B, 100 (2019), 144306 | DOI

[30] A. Principi, M. Carrega, M. B. Lundeberg, A. Woessner, F. H.L. Koppens, G. Vignale, M. Polini, “Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride”, Phys. Rev. B, 90:16 (2014) | DOI

[31] P. B. Allen, “Theory of thermal relaxation of electrons in metals”, Phys. Rev. Lett., 59:13 (1987), 1460–1463 | DOI

[32] M. Bernardi, J. Mustafa, J. B. Neaton, S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals”, Nat. Commun., 6 (2015), 7044 | DOI

[33] V. I. Mazhukin, M. G. Lobok, B. N. Chichkov, “Modeling of fast phase transitions dynamics in metal target irradiated by pico and femto second pulsed laser”, Appl. Surf. Sci., 255 (2009), 5112–5115 | DOI

[34] M. V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N. M. Bulgakova, L. V. Zhigilei, “Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidi-fication, Vaporization, and Phase Explosion”, Handbook of Laser Micro- and Nano-Engineering, ed. K. Sugioka, Springer, Cham, 2021, 83–163 | DOI

[35] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature (London), 413 (2001), 597–602 | DOI

[36] L. Zhang, J. T. Lü, J. S. Wang, B. Li, “Thermal transport across metal-insulator interface via electron-phonon interaction”, J. Phys.: Condensed Matter, 25:44 (2013), 445801, 8 pp. | DOI

[37] N. Singh, “Relaxation between electrons and surface phonons of a homogeneously photoexcited metal film”, Pramana, 63:5 (2004), 1083–1087 | DOI

[38] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, G. Chen, “Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths”, Phys. Rev. Let., 107:9 (2011), 09591, 4 pp. | DOI

[39] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J.H. McGaughey, J. A. Malen, “Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance”, Nat. Commun., 4:1 (2013), 1–7 | DOI

[40] R. B. Wilson, J. P. Feser, G. T. Hohensee, D. G. Cahill, “Two-channel model for nonequilibrium thermal transport in pump-probe experiments”, Phys. Rev. B, 88:14 (2013), 144305, 11 pp. | DOI

[41] K. T. Regner, J. P. Freedman, J. A. Malen, “Advances in Studying Phonon Mean Free Path Dependent Contributions to Thermal Conductivity”, Nanoscale and Microscale Thermophysical Engineering, 19:3 (2015), 183–205 | DOI | MR

[42] V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials”, Appl. Surf. Sci., 255 (2009), 9592–9596 | DOI

[43] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[44] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl

[45] H. J.C. Berendsen, J. P.M Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI

[46] I. S. Grigoriev, E. Z. Melihov (eds.), Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991

[47] V. E. Zinoviev, Teplofizicheskie svoistva metallov pri vysokikh temperaturakh, Metallurgiia, M., 1989

[48] G. Wilde, C. Mitsch, G. P. Gijrler, R. Willnecker, “Specific heat and related thermodynamic functions of undercooled Cu-Ni and Au melts”, J. Non-Crystalline Solids, 205-207 (1996), 425–429 | DOI

[49] E. Kaschnitz, G. Nussbaumer, G. Pottlacher, H. Jiiger, “Microsecond-resolution measurements of the thermophysical properties of liquid gold”, Intern. J. of Thermophysics, 14:2 (1993), 251–257 | DOI

[50] J. W. Arblaster, “Thermodynamic Properties of Gold”, J. Phase Equilibria Diffusion, 37:2 (2016), 229–245 | DOI

[51] J. W. Tester, R. C. Feber, C. C. Herrick, “Calorimetric study of liquid gold”, J. Chem. Eng. Data, 13:3 (1968), 419–421 | DOI

[52] A. T. Dinsdale, “SGTE data for pure elements”, Calphad, 15:4 (1991), 317–425 | DOI

[53] W. Evans, P. Keblinski, “Thermal conductivity of carbon nanotube cross-bar structures”, Nanotechnology, 21:47 (2010), 475704 | DOI

[54] F. Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity”, J. Chem. Phys., 106 (1997), 6082 | DOI

[55] Shenghong Ju, Xingang Liang, “Thermal conductivity of nanocrystalline silicon by direct molecular dynamics simulation”, J. Appl. Phys., 112 (2012), 064305 | DOI

[56] O. N. Koroleva, M. M. Demin, A. V. Mazhukin, V. I. Mazhukin, “Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range”, JPCS, 1787 (2021), 012026 | DOI

[57] M. M. Demin, O. N. Koroleva, A. A. Aleksashkina, V. I. Mazhukin, “Molecular-dynamic modeling of thermophysical properties of the phonon subsystem of copper in wide temperature range”, Math. Montis, 47 (2020), 137–151 | DOI | Zbl

[58] D. P. Sellan, E. S. Landry, J. E. Turney, A. J.H. McGaughey, C. H. Amon, “Size effects in molecular dynamics thermal conductivity predictions”, Phys. Rev. B, 81 (2010), 214305 | DOI

[59] P. K. Schelling, S. R. Phillpot, P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity”, Phys. Rev. B, 65 (2002), 144306 | DOI

[60] L. Hu, W. J. Evans, P. Keblinski, “One-dimensional phonon effects in direct molecular dy-namics method for thermal conductivity determination”, J. Appl. Phys., 110 (2011), 113511 | DOI

[61] A. Jain, A. J.H. McGaughey, “Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles”, Phys. Rev. B, 93 (2016), 081206(R) (R) | DOI

[62] Y. Wang, Z. Lu, X. Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering”, J. Appl. Phys., 119 (2016), 225109 | DOI

[63] N. Stojanovic, D. H.S. Maithripala, J. M. Berg, M. Holtz, “Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law”, Phys. Rev. B, 82, 075418 | DOI

[64] V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, “Atomistic modeling of crystal-melt interface mobility of fcc (Al, Cu) and bcc (Fe) metals in strong superheating/undercooling states”, Math. Montis, 48 (2020), 70–85 | DOI | Zbl

[65] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskikh svoistv, protcessov nagreva i plavleniia metallov metodom molekuliarnoi' dinamiki”, Math. Montis, 24 (2012), 47–65 | MR

[66] K. Lu, Y. Li, “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal”, Phys. Rev. Let., 80:20 (1998), 4474–4477 | DOI