Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_1_a4, author = {V. I. Mazhukin and O. N. Koroleva and A. V. Shapranov and M. M. Demin and A. A. Aleksashkina}, title = {Determination of thermal properties of gold in the region of melting-crystallization phase transition. {Molecular} dynamic approach}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--80}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/} }
TY - JOUR AU - V. I. Mazhukin AU - O. N. Koroleva AU - A. V. Shapranov AU - M. M. Demin AU - A. A. Aleksashkina TI - Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach JO - Matematičeskoe modelirovanie PY - 2022 SP - 59 EP - 80 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/ LA - ru ID - MM_2022_34_1_a4 ER -
%0 Journal Article %A V. I. Mazhukin %A O. N. Koroleva %A A. V. Shapranov %A M. M. Demin %A A. A. Aleksashkina %T Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach %J Matematičeskoe modelirovanie %D 2022 %P 59-80 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/ %G ru %F MM_2022_34_1_a4
V. I. Mazhukin; O. N. Koroleva; A. V. Shapranov; M. M. Demin; A. A. Aleksashkina. Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 59-80. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a4/
[1] Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W. Ager, D. C. Chrzan, E. E. Haller, “Large melting point hysteresis of Ge nanocrystals embedded in SiO2”, PRL, 97:13 (2006), 155701
[2] H. K. Christenson, “Confinement effects on freezing and melting”, J. Phys. Condens. Matter, 13 (2001), R95–R133 | DOI
[3] A. L. Pirozerski, O. I. Smirnova, A. I. Nedbai, O. L. Pirozerskaya, N. A. Grunina, V. M. Mikushev, “Peculiarities of melting and crystallization of n-decane in a porous glass”, Phys. Let. A, 383 (2019), 125872 | DOI
[4] K. K. Nanda, “Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles”, Appl. Phys. Lett., 87 (2005), 021909 | DOI
[5] V. D. Aleksandrov, V. A. Postnikov, “The Effect of Sample Mass on the Crystallization Su-percooling in Bismuth Melt”, Technical Physics Letters, 29:4 (2003), 287–290 | DOI
[6] T. T. Järvi, A. Kuronen, K. Meinander, K. Nordlund, K. Albe, “Contact epitaxy by deposition of Cu, Ag, Au, Pt, and Ni nanoclusters on (100) surfaces: Size limits and mechanisms”, Phys. Rev. B, 75:11 (2007), 115422 | DOI
[7] J-P. Borel, “Termodynamical size effect and the structure of metalic clusters”, Surf. Sci., 106 (1981), 1–9 | DOI
[8] D. R. Uhlmann, “On the internal nucleation of melting”, Journal of Non-Crystalline Solids, 41 (1980), 347–357 | DOI
[9] R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. M. Penisson, A. Bourret, “Surface melting enhanced by curvature effects”, Surf. Sci., 303:1–2 (1994), 231–246 | DOI
[10] K. F. Kelton, “Crystal Nucleation in Liquids and Glasses”, Solid State Physics, 45 (1991), 75–177 | DOI
[11] V. I. Mazhukin, A. V. Shapranov, M. M. Demin, N. A. Kozlovskaya, “Temperature Dependence of the Kinetics Rate of the Melting and Crystallization of Aluminum”, Bulletin of the Lebedev Physics Institute, 43:9 (2016), 283–286 | DOI
[12] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin, “Kinetic Melting and Crystallization Stages of Strongly Superheated and Supercooled Metals”, Math. Mod. Comp. Simul., 9:4 (2017), 448–456 | DOI | MR
[13] Lingkang Wu, Yiying Zhu, Hao Wang, Mo Li, “Crystal/melt coexistence in fcc and bcc metals: a molecular-dynamics study of kinetic coefficients”, IOP: Modelling and Simulation in Materials Science and Engineering, 29:6 (2021), 065016 | DOI
[14] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, O. N. Koroleva, “Mathematical formulation of a kinetic version of Stefan problem for heterogeneous melting/crystallization of metals”, Math. Montis, 36 (2016), 58–77 | Zbl
[15] Zhong-Li Liu, Jun-Sheng Sun, Rui Li, Xiu-Lu Zhang, Ling-Cang Cai, “Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold”, Commun. Theor. Phys., 65 (2016), 613–616 | DOI
[16] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation”, Phys. Rev. B, 65 (2002), 092103 | DOI
[17] L. A. Borynyak, A. P. Chernyshev, “Temperaturnyj gisterezis pri plavlenii i kristallizacii nanoobektov”, Nauchnyj vestnik NGTU, 2014, no. 1 (54), 172–179
[18] V. D. Aleksandrov, E. A. Pokintelicza, A. Yu. Sobolev, “Thermal hysteresis during the melting and crystallization of macroobjects”, Technical Physics, 62:5 (2017), 741–744 | DOI
[19] L. J. Lewis, P. Jensen, J.-L. Barrat, “Melting, freezing, and coalescence of gold nanoclusters”, Phys. Rev. B, 56:4 (1997), 1–12 | DOI
[20] S. N. Luo, T. J. Ahrens, T. Çağ{\i}n, A. Strachan, W. A. Goddard, D. C. Swift, “Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments”, Phys. Rev. B, 68:13 (2003), 134206 | DOI
[21] Q. S. Mei, K. Lu, “Melting and superheating of crystalline solids: from bulk to nanocrystals”, Progr. Mater. Sci., 52:8 (2007), 1175–1262 | DOI
[22] S. Williamson, G. Mourou, J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum”, Phys. Rev. Let., 52:26 (1984), 2364–2367 | DOI
[23] S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, “How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis”, Chem. Phys. Chem., 18:9 (2017), 1012–1019 | DOI
[24] N. Elahi, M. Kamali, M. H. Baghersad, “Recent biomedical applications of gold nanoparticles: A review”, Talanta, 184 (2018), 537–556 | DOI
[25] X. Zhang, “Gold Nanoparticles: Recent Advances in the Biomedical Applications”, Cell Biochemistry and Biophysics, 72:3 (2015), 771–775 | DOI
[26] K. Maximova, A. Aristov, M. Sentis, A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water”, Nanotechnology, 26:6 (2015), 065601 | DOI
[27] V. I. Mazhukin, “Kinetics and Dynamics of Phase Transformations in Metals Under Action of Ultra-Short High-Power Laser Pulses”, Laser Pulses Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 544 pp.
[28] N. Ashkroft, N. Mermin, Solid state physics, Saunders College Publishing, NY, 1976
[29] Z. Tong, S. Li, X. Ruan, H. Bao, “Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals”, Phys. Rev. B, 100 (2019), 144306 | DOI
[30] A. Principi, M. Carrega, M. B. Lundeberg, A. Woessner, F. H.L. Koppens, G. Vignale, M. Polini, “Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride”, Phys. Rev. B, 90:16 (2014) | DOI
[31] P. B. Allen, “Theory of thermal relaxation of electrons in metals”, Phys. Rev. Lett., 59:13 (1987), 1460–1463 | DOI
[32] M. Bernardi, J. Mustafa, J. B. Neaton, S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals”, Nat. Commun., 6 (2015), 7044 | DOI
[33] V. I. Mazhukin, M. G. Lobok, B. N. Chichkov, “Modeling of fast phase transitions dynamics in metal target irradiated by pico and femto second pulsed laser”, Appl. Surf. Sci., 255 (2009), 5112–5115 | DOI
[34] M. V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N. M. Bulgakova, L. V. Zhigilei, “Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidi-fication, Vaporization, and Phase Explosion”, Handbook of Laser Micro- and Nano-Engineering, ed. K. Sugioka, Springer, Cham, 2021, 83–163 | DOI
[35] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature (London), 413 (2001), 597–602 | DOI
[36] L. Zhang, J. T. Lü, J. S. Wang, B. Li, “Thermal transport across metal-insulator interface via electron-phonon interaction”, J. Phys.: Condensed Matter, 25:44 (2013), 445801, 8 pp. | DOI
[37] N. Singh, “Relaxation between electrons and surface phonons of a homogeneously photoexcited metal film”, Pramana, 63:5 (2004), 1083–1087 | DOI
[38] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, G. Chen, “Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths”, Phys. Rev. Let., 107:9 (2011), 09591, 4 pp. | DOI
[39] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J.H. McGaughey, J. A. Malen, “Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance”, Nat. Commun., 4:1 (2013), 1–7 | DOI
[40] R. B. Wilson, J. P. Feser, G. T. Hohensee, D. G. Cahill, “Two-channel model for nonequilibrium thermal transport in pump-probe experiments”, Phys. Rev. B, 88:14 (2013), 144305, 11 pp. | DOI
[41] K. T. Regner, J. P. Freedman, J. A. Malen, “Advances in Studying Phonon Mean Free Path Dependent Contributions to Thermal Conductivity”, Nanoscale and Microscale Thermophysical Engineering, 19:3 (2015), 183–205 | DOI | MR
[42] V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials”, Appl. Surf. Sci., 255 (2009), 9592–9596 | DOI
[43] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[44] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl
[45] H. J.C. Berendsen, J. P.M Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[46] I. S. Grigoriev, E. Z. Melihov (eds.), Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991
[47] V. E. Zinoviev, Teplofizicheskie svoistva metallov pri vysokikh temperaturakh, Metallurgiia, M., 1989
[48] G. Wilde, C. Mitsch, G. P. Gijrler, R. Willnecker, “Specific heat and related thermodynamic functions of undercooled Cu-Ni and Au melts”, J. Non-Crystalline Solids, 205-207 (1996), 425–429 | DOI
[49] E. Kaschnitz, G. Nussbaumer, G. Pottlacher, H. Jiiger, “Microsecond-resolution measurements of the thermophysical properties of liquid gold”, Intern. J. of Thermophysics, 14:2 (1993), 251–257 | DOI
[50] J. W. Arblaster, “Thermodynamic Properties of Gold”, J. Phase Equilibria Diffusion, 37:2 (2016), 229–245 | DOI
[51] J. W. Tester, R. C. Feber, C. C. Herrick, “Calorimetric study of liquid gold”, J. Chem. Eng. Data, 13:3 (1968), 419–421 | DOI
[52] A. T. Dinsdale, “SGTE data for pure elements”, Calphad, 15:4 (1991), 317–425 | DOI
[53] W. Evans, P. Keblinski, “Thermal conductivity of carbon nanotube cross-bar structures”, Nanotechnology, 21:47 (2010), 475704 | DOI
[54] F. Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity”, J. Chem. Phys., 106 (1997), 6082 | DOI
[55] Shenghong Ju, Xingang Liang, “Thermal conductivity of nanocrystalline silicon by direct molecular dynamics simulation”, J. Appl. Phys., 112 (2012), 064305 | DOI
[56] O. N. Koroleva, M. M. Demin, A. V. Mazhukin, V. I. Mazhukin, “Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range”, JPCS, 1787 (2021), 012026 | DOI
[57] M. M. Demin, O. N. Koroleva, A. A. Aleksashkina, V. I. Mazhukin, “Molecular-dynamic modeling of thermophysical properties of the phonon subsystem of copper in wide temperature range”, Math. Montis, 47 (2020), 137–151 | DOI | Zbl
[58] D. P. Sellan, E. S. Landry, J. E. Turney, A. J.H. McGaughey, C. H. Amon, “Size effects in molecular dynamics thermal conductivity predictions”, Phys. Rev. B, 81 (2010), 214305 | DOI
[59] P. K. Schelling, S. R. Phillpot, P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity”, Phys. Rev. B, 65 (2002), 144306 | DOI
[60] L. Hu, W. J. Evans, P. Keblinski, “One-dimensional phonon effects in direct molecular dy-namics method for thermal conductivity determination”, J. Appl. Phys., 110 (2011), 113511 | DOI
[61] A. Jain, A. J.H. McGaughey, “Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles”, Phys. Rev. B, 93 (2016), 081206(R) (R) | DOI
[62] Y. Wang, Z. Lu, X. Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering”, J. Appl. Phys., 119 (2016), 225109 | DOI
[63] N. Stojanovic, D. H.S. Maithripala, J. M. Berg, M. Holtz, “Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law”, Phys. Rev. B, 82, 075418 | DOI
[64] V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, “Atomistic modeling of crystal-melt interface mobility of fcc (Al, Cu) and bcc (Fe) metals in strong superheating/undercooling states”, Math. Montis, 48 (2020), 70–85 | DOI | Zbl
[65] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskikh svoistv, protcessov nagreva i plavleniia metallov metodom molekuliarnoi' dinamiki”, Math. Montis, 24 (2012), 47–65 | MR
[66] K. Lu, Y. Li, “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal”, Phys. Rev. Let., 80:20 (1998), 4474–4477 | DOI