MHD simulation of supernova remnant dynamics taking into account the neutral component of the plasma
Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique and results of three-dimensional modeling of a radiating shock wave arising during the expansion of a supernova remnant into the surrounding interstellar medium are presented. The purpose of the calculations is to analyze the hydrodynamic instability in a dense layer of matter formed during the deceleration of the remnant in the interstellar gas. The layer structure, which largely determines the efficiency of cosmic ray generation, depends on a number of factors, in particular, on the rate of radiation cooling of the interstellar plasma, the magnitude of the magnetic field, and the presence of a neutral component in an ionized medium. The creation of a methodology and software for assessing the listed factors is the determining motivation for this work. For the simulations we use the MARPLE software package (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences), which is developed especially to solve magnetic radiation gas dynamics problems on high-performance computing systems of cluster type.
Keywords: supernovae, supernova envelopes, radiation-magnetohydrodynamic model, numerical modeling.
@article{MM_2022_34_1_a3,
     author = {Yu. S. Sharova},
     title = {MHD simulation of supernova remnant dynamics taking into account the neutral component of the plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a3/}
}
TY  - JOUR
AU  - Yu. S. Sharova
TI  - MHD simulation of supernova remnant dynamics taking into account the neutral component of the plasma
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 47
EP  - 58
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_1_a3/
LA  - ru
ID  - MM_2022_34_1_a3
ER  - 
%0 Journal Article
%A Yu. S. Sharova
%T MHD simulation of supernova remnant dynamics taking into account the neutral component of the plasma
%J Matematičeskoe modelirovanie
%D 2022
%P 47-58
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_1_a3/
%G ru
%F MM_2022_34_1_a3
Yu. S. Sharova. MHD simulation of supernova remnant dynamics taking into account the neutral component of the plasma. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a3/

[1] P. Colella, P. R. Woodward, “The Piecewise Parabolic Method (PPM) for gas-dynamical simulations”, Journal of Computational Physics, 54:1 (1984), 174–201 | DOI | MR | Zbl

[2] S. Cielo, L. Iapichino, J. Günther, Ch. Federrath, E. Mayer, M. Wiedemann, Visualizing the world's largest turbulence simulation, 2019, arXiv: 1910.07850

[3] O. Tesileanu, A. Mignone, S. Massaglia, “Simulating radiative astrophysical flows with the pluto code: a non-equilibrium, multi-species cooling function”, Astronomy Astrophysics, 488:1, July (2008), 429–440 | DOI

[4] A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst, M. J. Lijewski, A. Nonaka, M. Singer, M. Zingale, “Castro: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity”, Astrophysical J., 715:2, May (2010), 1221–1238 | DOI

[5] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, H. Tufo, “Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes”, Astrophysical J., Supplement Ser., 131 (2000), 273–334 | DOI

[6] V. A. Gasilov, S. V. Dyachenko, E. L. Kartashev, O. G. Ol'khovskaya, G. A. Bagdasarov, A. S. Boldarev, Svidetelstvo o gosudarstvennoi registratsii N 2012660911 ot 30.12.2012. Programma dlia EVM “Programmnyi kompleks MARPLE”

[7] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matematicheskii sbornik, 47(89):3 (1959), 271–306 | Zbl

[8] T. Miyoshi, K. Kusano, “A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics”, Journal of Computational Physics, 208:1 (2005), 315–344 | DOI | MR | Zbl

[9] G. A. Bagdasarov, Trekhmernoye modelirovanie magnitouskorennoi impulsnoi plazmy s uchetom effektov, obuslovlennykh obobshchennym zakonom Oma, dissertatsiia na soiskanie uchenoi stepeni k.f.-m.n., IPM im. M.V. Keldysha RAN, M., 2012

[10] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, Heidelberg–Berlin, 2009 | Zbl

[11] R. H. D. Townsend, “An exact integration scheme for radiative cooling in hydrodynamical simulations”, The Astrophysical Journal, Supplement Series, 181:2 (2009), 391–397 | DOI

[12] J. D. Huba, NRL PLASMA FORMULARY Supported by the Office of Naval Research, Naval Research Laboratory, DC, Washington, 2013

[13] N. N. Kalitkin, Chislennyye metody, Nauka, M., 1978

[14] J. S. Kaastra, R. Keppens, K. M. Schure, D. Kosenko, J. Vin, “A new radiative cooling curve based on an up-to-date plasma emission code”, Astronomy Astrophysics, 508:2 (2009), 751–757 | DOI