Modeling of piezoconductivity process of two-phase fluid system in fractured-porous reservoir
Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mass transfer in a fractured-porous carbonate reservoir is considered. Such reservoirs have a natural system of destruction in the form of fractures and cavities. In this work, a mathematical model of fluid redistribution between a pore-type matrix and a network of natural fractures is proposed and studied. The resulting system of differential equations is quasilinear and rather complicated. When solving it numerically, a number of difficulties arises. First, the system contains a large number of unknown functions. Second, the nature of the nonlinearity of the equations is such that the corresponding linearized system no longer possesses the property of self-adjointness of spatial differential operators. To solve the problem, the method of splitting by physical processes and the approximations of differential operators by the method of finite differences are used. The resulting split grid model is equivalent to the discrete initial balance equations of the system (conservation of mass components of fluids and total energy of the system) written in divergent form. This approach is based on a nonlinear approximation of grid functions in time, which depends on the fraction of the volume occupied by fluids in the pores, and is easy to implement. The work presents the results of numerical calculations, analyzes the space-time dynamics of pressure change processes.
Keywords: mathematical modeling, differential equations, mass transfer, fractured reservoir
Mots-clés : saturation.
@article{MM_2022_34_1_a2,
     author = {Yu. O. Bobreneva},
     title = {Modeling of piezoconductivity process of two-phase fluid system in fractured-porous reservoir},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a2/}
}
TY  - JOUR
AU  - Yu. O. Bobreneva
TI  - Modeling of piezoconductivity process of two-phase fluid system in fractured-porous reservoir
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 33
EP  - 46
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_1_a2/
LA  - ru
ID  - MM_2022_34_1_a2
ER  - 
%0 Journal Article
%A Yu. O. Bobreneva
%T Modeling of piezoconductivity process of two-phase fluid system in fractured-porous reservoir
%J Matematičeskoe modelirovanie
%D 2022
%P 33-46
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_1_a2/
%G ru
%F MM_2022_34_1_a2
Yu. O. Bobreneva. Modeling of piezoconductivity process of two-phase fluid system in fractured-porous reservoir. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a2/

[1] A. V. Chernitskii, Geologicheskoe modelirovanie neftianykh zalezhei massivnogo tipa v karbonatnykh treshchinovatykh kollektorakh, OAORMNTK-Nefteotdacha, M., 2002, 254 pp.

[2] N. A. Nelson, Geologic analysis of naturally fractured reservoirs, Butterworth-Heinemann, Woburn, 2001, 332 pp.

[3] T. D. Golf-Racht, Fundamentals of fractured reservoir engineering, Elsevier scientific publishing company, A-O-NY, 1982, 732 pp.

[4] S. O. Denk, Problemy treshchinovatykh produktivnykh obiektov, Elektronnye izdatelskie sistemy, P., 2004, 334 pp.

[5] J. E. Warren, P. J. Root, “The behavior of naturally fractured reservoirs”, Old SPE Journal, 3:3 (1963), 245–255

[6] R. Aguilera, Naturally fractured reservoirs, T. Pennwell Corp, 1980, 521 pp.

[7] A. N. Tikhonov, A. A. Samarskii, Uravneniia matematicheskoi fiziki, Nauka, M., 1972, 742 pp.

[8] P. I. Rahimly, Yu. A. Poveshchenko, O. R. Rahimly, V. O. Podryga, G. I. Kasakevich, I. V. Gasilova, “The use of splitting with respect to physical processes for modeling the dissociation of gas hydrates”, Math. Models Comput. Simul., 10:1 (2018), 69–78 | DOI | MR

[9] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[10] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 432 pp.

[11] N. N. Kalitkin, Chislennye metody, BKHV-Peterburg, SPb., 2011, 592 pp.

[12] I. B. Petrov, A. I. Lobanov, Lektsii po vychislitelnoi matematike, INTUIT, M., 2013, 528 pp.