Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_1_a1, author = {Egor Urvachev and Semyon Glazyrin}, title = {The simulation of {SN2009ip} bolometric light curves}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {16--32}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/} }
Egor Urvachev; Semyon Glazyrin. The simulation of SN2009ip bolometric light curves. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 16-32. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/
[1] D. Branch, G. A. Tammann, “Type Ia supernovae as standard candles”, Annual review of astronomy and astrophysics, 30:1 (1992), 359–389 | DOI
[2] S. Blinnikov et al, “Direct determination of the hubble parameter using type IIn supernovae”, JETP letters, 96:3 (2012), 153–157 | DOI
[3] P. V. Baklanov et al, “Study of supernovae important for cosmology”, JETP letters, 98:7 (2013), 432–439 | DOI
[4] E. K. Grasberg, D. K. Nadezhin, Type II supernovae-Two successive explosions?, Soviet Astronomy Letters, 12 (1986), 168–175
[5] N. N. Chugai et al, “The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope”, Monthly Notices of the Royal Astronomical Society, 352:4 (2004), 1213–1231 | DOI
[6] S. E. Woosley, S. Blinnikov, A. Heger, “Pulsational pair instability as an explanation for the most luminous supernovae”, Nature, 450:7168 (2007), 390–392 | DOI
[7] R. A. Chevalier, C. M. Irwin, “Shock breakout in dense mass loss: luminous supernovae”, The Astrophysical Journal Letters, 729:1 (2011), L6 | DOI
[8] E. Sorokina et al, “Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes”, The Astrophysical Journal, 829:1 (2016), 17 | DOI | MR
[9] T. J. Moriya, E. I. Sorokina, R. A. Chevalier, “Superluminous supernovae”, Space Science Reviews, 214:2 (2018), 1–37 | DOI
[10] R. Chevalier, J. M. Blondin, “Hydrodynamic instabilities in supernova remnants: Early radiative cooling”, The Astrophysical Journal, 444 (1995), 312–317 | DOI
[11] D. A. Badjin et al, “On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks”, Monthly Notices of the Royal Astronomical Society, 459:2 (2016), 2188–2211 | DOI
[12] D. A. Badjin, S. I. Glazyrin, “Physical and numerical instabilities of radiatively cooling shocks in turbulent magnetized media”, Monthly Notices of the Royal Astronomical Society, 507:1 (2021), 1492–1512 | DOI
[13] S. I. Glazyrin, “Investigation of burning in type Ia supernovae”, Astronomy Letters, 39:4 (2013), 221–226 | DOI | MR
[14] E. Urvachev et al, “The Simulation of Superluminous Supernovae Using the M1 Approach for Radiation Transfer”, The Astrophysical J. Supplement Series, 256:1 (2021), 8 | DOI
[15] M. Potashov et al, “Direct distance measurements to SN 2009ip”, Monthly Notices of the Royal Astronomical Society: Letters, 431:1 (2013), L98–L101 | DOI
[16] N. M.H. Vaytet et al, “A numerical model for multigroup radiation hydrodynamics”, Journal of Quantitative Spectroscopy and Radiative Transfer, 112:8 (2011), 1323–1335 | DOI
[17] M. A. Skinner et al, “Fornax: A flexible code for multiphysics astrophysical simulations”, The Astrophysical Journal Supplement Series, 241:1 (2019), 7 | DOI
[18] M. Gonzalez, E. Audit, P. Huynh, “HERACLES: a three-dimensional radiation hydrody-namics code”, Astronomy Astrophysics, 464:2 (2007), 429–435 | DOI
[19] M. R. Krumholz, R. I. Klein, C. F. McKee, “Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores”, The Astrophysical Journal, 656:2 (2007), 959 | DOI
[20] C. D. Levermore, “Relating Eddington factors to flux limiters”, Journal of Quantitative Spectroscopy and Radiative Transfer, 31:2 (1984), 149–160 | DOI
[21] B. Dubroca, J. L. Feugeas, “Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif”, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 329:10 (1999), 915–920 | Zbl
[22] O. Just, M. Obergaulinger, H. T. Janka, “A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics”, Monthly Notices of the Royal Astronomical Society, 453:4 (2015), 3386–3413 | DOI
[23] D. Mihalas, B. W. Mihalas, Foundations of radiation hydrodynamics, New York, 1984 | Zbl
[24] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science Business Media, 2013
[25] M. A. Skinner, E. C. Ostriker, “A two-moment radiation hydrodynamics module in Athena using a time-explicit Godunov method”, The Astrophysical Journal Supplement Series, 206:2 (2013), 21 | DOI | MR
[26] S. I. Blinnikov et al, “A comparative modeling of supernova 1993J”, The Astrophysical Journal, 496:1 (1998), 454 | DOI
[27] N. Roth, D. Kasen, “Monte Carlo radiation-hydrodynamics with implicit methods”, The Astrophysical Journal Supplement Series, 217:1 (2015), 9 | DOI
[28] I. Hubeny, A. Burrows, A New Algorithm for 2-D Transport for Astrophysical Simulations: I. General Formulation and Tests for the 1-D Spherical Case, 2006, arXiv: astro-ph/0609049
[29] J. M. Ferguson, J. E. Morel, R. Lowrie, “The equilibrium-diffusion limit for radiation hydrodynamics”, J. of Quantitative Spectroscopy and Radiative Transfer, 202 (2017), 176–186 | DOI
[30] W. Zhang et al, “CASTRO: a new compressible astrophysical solver. III. Multigroup radiation hydrodynamics”, The Astrophysical Journal Supplement Series, 204:1 (2012), 7 | DOI
[31] R. Teyssier, “Grid-based hydrodynamics in astrophysical fluid flows”, Annual Review of Astronomy and Astrophysics, 53 (2015), 325–364 | DOI
[32] S. I. Blinnikov et al, “Theoretical light curves for deflagration models of type Ia supernova”, Astronomy Astrophysics, 453:1 (2006), 229–240 | DOI