The simulation of SN2009ip bolometric light curves
Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 16-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct method of measuring cosmological distances relies on observations of the growth period of superluminous supernovae light curves. These supernovae can be explained by a strong shock wave propagation through the dense circumstellar matter. The direct method assumes that the thin dense shell formed under such conditions is spherically symmetric. However, multidimensional instabilities can break this symmetry. This article presents the simulation of SN2009ip, which has been successfully applied for the direct method, using the radiation hydrodynamics code, FRONT. It was shown that a simple model for SN2009ip correctly reproduces both the bolometric light curve as well as the dynamics of the dense shell. Furthermore, this dense shell remains spherically symmetric at least during the growth period of the light curve.
Keywords: supernovae, light curves, radiation transfer.
@article{MM_2022_34_1_a1,
     author = {Egor Urvachev and Semyon Glazyrin},
     title = {The simulation of {SN2009ip} bolometric light curves},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--32},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/}
}
TY  - JOUR
AU  - Egor Urvachev
AU  - Semyon Glazyrin
TI  - The simulation of SN2009ip bolometric light curves
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 16
EP  - 32
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/
LA  - ru
ID  - MM_2022_34_1_a1
ER  - 
%0 Journal Article
%A Egor Urvachev
%A Semyon Glazyrin
%T The simulation of SN2009ip bolometric light curves
%J Matematičeskoe modelirovanie
%D 2022
%P 16-32
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/
%G ru
%F MM_2022_34_1_a1
Egor Urvachev; Semyon Glazyrin. The simulation of SN2009ip bolometric light curves. Matematičeskoe modelirovanie, Tome 34 (2022) no. 1, pp. 16-32. http://geodesic.mathdoc.fr/item/MM_2022_34_1_a1/

[1] D. Branch, G. A. Tammann, “Type Ia supernovae as standard candles”, Annual review of astronomy and astrophysics, 30:1 (1992), 359–389 | DOI

[2] S. Blinnikov et al, “Direct determination of the hubble parameter using type IIn supernovae”, JETP letters, 96:3 (2012), 153–157 | DOI

[3] P. V. Baklanov et al, “Study of supernovae important for cosmology”, JETP letters, 98:7 (2013), 432–439 | DOI

[4] E. K. Grasberg, D. K. Nadezhin, Type II supernovae-Two successive explosions?, Soviet Astronomy Letters, 12 (1986), 168–175

[5] N. N. Chugai et al, “The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope”, Monthly Notices of the Royal Astronomical Society, 352:4 (2004), 1213–1231 | DOI

[6] S. E. Woosley, S. Blinnikov, A. Heger, “Pulsational pair instability as an explanation for the most luminous supernovae”, Nature, 450:7168 (2007), 390–392 | DOI

[7] R. A. Chevalier, C. M. Irwin, “Shock breakout in dense mass loss: luminous supernovae”, The Astrophysical Journal Letters, 729:1 (2011), L6 | DOI

[8] E. Sorokina et al, “Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes”, The Astrophysical Journal, 829:1 (2016), 17 | DOI | MR

[9] T. J. Moriya, E. I. Sorokina, R. A. Chevalier, “Superluminous supernovae”, Space Science Reviews, 214:2 (2018), 1–37 | DOI

[10] R. Chevalier, J. M. Blondin, “Hydrodynamic instabilities in supernova remnants: Early radiative cooling”, The Astrophysical Journal, 444 (1995), 312–317 | DOI

[11] D. A. Badjin et al, “On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks”, Monthly Notices of the Royal Astronomical Society, 459:2 (2016), 2188–2211 | DOI

[12] D. A. Badjin, S. I. Glazyrin, “Physical and numerical instabilities of radiatively cooling shocks in turbulent magnetized media”, Monthly Notices of the Royal Astronomical Society, 507:1 (2021), 1492–1512 | DOI

[13] S. I. Glazyrin, “Investigation of burning in type Ia supernovae”, Astronomy Letters, 39:4 (2013), 221–226 | DOI | MR

[14] E. Urvachev et al, “The Simulation of Superluminous Supernovae Using the M1 Approach for Radiation Transfer”, The Astrophysical J. Supplement Series, 256:1 (2021), 8 | DOI

[15] M. Potashov et al, “Direct distance measurements to SN 2009ip”, Monthly Notices of the Royal Astronomical Society: Letters, 431:1 (2013), L98–L101 | DOI

[16] N. M.H. Vaytet et al, “A numerical model for multigroup radiation hydrodynamics”, Journal of Quantitative Spectroscopy and Radiative Transfer, 112:8 (2011), 1323–1335 | DOI

[17] M. A. Skinner et al, “Fornax: A flexible code for multiphysics astrophysical simulations”, The Astrophysical Journal Supplement Series, 241:1 (2019), 7 | DOI

[18] M. Gonzalez, E. Audit, P. Huynh, “HERACLES: a three-dimensional radiation hydrody-namics code”, Astronomy Astrophysics, 464:2 (2007), 429–435 | DOI

[19] M. R. Krumholz, R. I. Klein, C. F. McKee, “Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores”, The Astrophysical Journal, 656:2 (2007), 959 | DOI

[20] C. D. Levermore, “Relating Eddington factors to flux limiters”, Journal of Quantitative Spectroscopy and Radiative Transfer, 31:2 (1984), 149–160 | DOI

[21] B. Dubroca, J. L. Feugeas, “Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif”, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 329:10 (1999), 915–920 | Zbl

[22] O. Just, M. Obergaulinger, H. T. Janka, “A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics”, Monthly Notices of the Royal Astronomical Society, 453:4 (2015), 3386–3413 | DOI

[23] D. Mihalas, B. W. Mihalas, Foundations of radiation hydrodynamics, New York, 1984 | Zbl

[24] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science Business Media, 2013

[25] M. A. Skinner, E. C. Ostriker, “A two-moment radiation hydrodynamics module in Athena using a time-explicit Godunov method”, The Astrophysical Journal Supplement Series, 206:2 (2013), 21 | DOI | MR

[26] S. I. Blinnikov et al, “A comparative modeling of supernova 1993J”, The Astrophysical Journal, 496:1 (1998), 454 | DOI

[27] N. Roth, D. Kasen, “Monte Carlo radiation-hydrodynamics with implicit methods”, The Astrophysical Journal Supplement Series, 217:1 (2015), 9 | DOI

[28] I. Hubeny, A. Burrows, A New Algorithm for 2-D Transport for Astrophysical Simulations: I. General Formulation and Tests for the 1-D Spherical Case, 2006, arXiv: astro-ph/0609049

[29] J. M. Ferguson, J. E. Morel, R. Lowrie, “The equilibrium-diffusion limit for radiation hydrodynamics”, J. of Quantitative Spectroscopy and Radiative Transfer, 202 (2017), 176–186 | DOI

[30] W. Zhang et al, “CASTRO: a new compressible astrophysical solver. III. Multigroup radiation hydrodynamics”, The Astrophysical Journal Supplement Series, 204:1 (2012), 7 | DOI

[31] R. Teyssier, “Grid-based hydrodynamics in astrophysical fluid flows”, Annual Review of Astronomy and Astrophysics, 53 (2015), 325–364 | DOI

[32] S. I. Blinnikov et al, “Theoretical light curves for deflagration models of type Ia supernova”, Astronomy Astrophysics, 453:1 (2006), 229–240 | DOI