Determihation of gradient-drift instability parameters under conditions of multiple plasma bubbles
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 116-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical calculations of the spatial distribution of increments of gradientdrift instability in the region of developed multiple equatorial ionospheric bubbles are presented. The results of numerical modeling of the spatial structure of equatorial ionospheric bubbles, as well as measurement data in the areas of developed plasma bubbles, both satellite and terrestrial, show the presence in these areas of large electron density gradients reaching values from 10$^{-4}$ m$^{-1}$ to 10$^{-3}$ m$^{-1}$ and high drift transfer velocities exceeding 1000 m/sec. With such plasma parameters, small-scale inhomogeneities can develop in the region of plasma bubbles, which increase due to various types of instabilities at positive growth rates. The spatial distribution of the gradient-drift instability increment is investigated. With this type of instability, small-scale electron density inhomogeneities can be generated, the spatiotemporal scales of which are characteristic of equatorial Fscattering. Due to developed plasma bubbles, on the fronts of which gradient-drift instabilities develop, the study was carried out in the approximation of a strong elongation of plasma bubbles along the geomagnetic field lines. This makes it possible to use the results of numerical simulation of the instability using the two-dimensional approximation of the Rayleigh-Taylor instability model as the background electron concentration. Unlike previous works of the authors, here the study is aimed at obtaining the spatial distribution of the growth rate both for different configurations of plasma bubbles and for different ratios of wave numbers. When studying the features of the distribution of the increment of the gradient-drift instability in the region of development of plasma bubbles, it is necessary to take into account the significant inhomogeneity of the background values of the electron density and drift velocities. In this work, this is achieved by comparing the wavelengths with the parameters of the zones of development of these waves; in particular, the spatial and temporal extent of the region of large positive values of the increase increment is estimated. These estimates determine the choice of the range of wave numbers. It has been found that electron density gradients at the fronts of developed ionospheric bubbles can be an effective mechanism for the development of gradient-drift instability; the increment of gradient-drift instability at the fronts of plasma bubbles reaches 0.01 sec$^{-1}$, and for multiple bubbles these values are slightly less than for a single bubble. Such values, taking into account the time of existence of regions with such increments of more than 1000 sec, create conditions for the development of small-scale inhomogeneities on the "legs" of plasma bubbles.
Keywords: gradient-drift instability, growth rate, F-scatter, Rayleigh-Taylor instability, ionospheric bubbles, geomagnetic field.
@article{MM_2022_34_12_a7,
     author = {N. M. Kashchenko and S. A. Ishanov and E. V. Zubkov and V. N. Khudenko},
     title = {Determihation of gradient-drift instability parameters under conditions of multiple plasma bubbles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--128},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a7/}
}
TY  - JOUR
AU  - N. M. Kashchenko
AU  - S. A. Ishanov
AU  - E. V. Zubkov
AU  - V. N. Khudenko
TI  - Determihation of gradient-drift instability parameters under conditions of multiple plasma bubbles
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 116
EP  - 128
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a7/
LA  - ru
ID  - MM_2022_34_12_a7
ER  - 
%0 Journal Article
%A N. M. Kashchenko
%A S. A. Ishanov
%A E. V. Zubkov
%A V. N. Khudenko
%T Determihation of gradient-drift instability parameters under conditions of multiple plasma bubbles
%J Matematičeskoe modelirovanie
%D 2022
%P 116-128
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a7/
%G ru
%F MM_2022_34_12_a7
N. M. Kashchenko; S. A. Ishanov; E. V. Zubkov; V. N. Khudenko. Determihation of gradient-drift instability parameters under conditions of multiple plasma bubbles. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 116-128. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a7/

[1] Iu. A. Sukovatov, “Teoreticheskoe issledovanie nelineinoi stadii gradientno-dreifovoi neustoichivosti vo vneshnei ionosfere”, Izvestiia AltGU, 2012, no. 1-1, 222–225

[2] S. L. Ossakow, P. K. Chaturvedi, “Morphological studies of rising equatorial spread F bubbles”, J. Geophys. Res., 83 (1978), 2085–2090 | DOI

[3] B. W. Reinisch, M. Abdu, I. Batista, G. S. Sales, G. Khmyrov, T. A. Bullett, J. Chau, V. Rios, “Multistation digisonde observations of equatorial spread in South America”, Ann. Geophys., 22 (2004), 3145 | DOI

[4] J. Rottger, “The macro-scale structure of equatorial spread-F irregularities”, J. Atm. Terr. Phys., 38 (1976), 97–101 | DOI

[5] S. Saito, T. Maruyama, M. Ishii, M. Kubota, G. Ma, Y. Chen, J. Li, C. H. Duyen, T. L. Truong, “Observations of small- to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receiv-ers”, J. Geophys. Res., 113:A1 (2008), 2313

[6] D. T. Farley, B. B. Balsley, R. F. Woodman, J. P. McClure, “Equatorial spread F: Implications of VHF radar observations”, J. Geophys. Res., 75 (1970), 7199–7216 | DOI

[7] J. D. Huba, G. Joyce, J. Krall, “Three-dimensional equatorial spread F modeling”, Geophys. Res. Lett., 35 (2008), L10102 | DOI

[8] R. F. Woodman, Spread-F an old equatorial aeronomy problem finally resolved?, Ann. Geophys, 27 (2009), 1915–1934 | DOI

[9] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Numerical Study of the Gradient-Drift In-stability's Growth Rate at the Fronts of Equatorial Plasma Bubbles”, Mathematical Models and Computer Simulations, 14:4 (2021), 623–630 | DOI | MR

[10] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievskii, E. P. Stavitskaia, “Chislennoe issledovanie parametrov gradientno-dreifovoi neustoichivosti na frontakh plazmennykh puzyrei”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, FGBOU VO «Voronezhskii gosudarstvennyi universitet», 2021, 927–933

[11] N. M. Kashchenko, S. V. Matsievskii, M. A. Nikitin, “Ionosfernye puzyri: ionnyi sostav, skorosti dvizheniia plazmy i struktura”, Izvestiia vuzov. Radiofizika, 32:11 (1989), 1320–1326

[12] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity”, Mathematical Models and Computer Simulations, 11:3 (2019), 341–348 | DOI | MR

[13] A. E. Hedin, J. E. Salah, J. E. Evans et al, “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147 | DOI

[14] A. E. Hedin, C. A. Reber, G. P. Newton et al, “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition”, J. Geophys. Res., 82:A1 (1977), 2148–2156 | DOI

[15] A. V. Safronov, “Otsenka tochnosti i sravnitelnyi analiz raznostnykh skhem skvoznogo scheta povyshennogo poriadka”, Vychislitelnye metody i programmirovanie, 11:1 (2010), 137–143

[16] Iu. A. Sukovatov, “Chislennoe modelirovanie nelineinoi stadii razvitiia gradientno-dreifovoi neustoichivosti vo vneshnei ionosfere”, Izvestiia AltGU, 2011, no. 1-2, 168–171