Reinforcement machine learning model for sports infrastructure development planning
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 103-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the actual task of planning the rational development of sports infrastructure in conditions of limited resources. The development of a mathematical model for the evaluation of sports infrastructure projects and the schedule for their implementation was carried out. To evaluate projects, it is proposed to use methods of multi-criteria decision analysis based on fuzzy preference areas. The search for the optimal parameters of the proposed model is difficult due to the presence of binary variables that make the problem NP-hard. To find a solution close to the optimal one, a machine learning model with reinforcement is proposed. Software has been developed that allows both ranking projects and determining the schedule for their implementation, taking into account available resources and needs. An algorithmic and software solution based on a machine learning model with reinforcement is invariant with respect to the subject area and can also be used in other combinatorial optimization problems. On the example of the problem of choosing regions for the construction of basketball courts, computational experiments were carried out for the proposed solution.
Keywords: reinforcement machine learning model, multicriteria analysis, infrastructure project, combinatorial optimization.
@article{MM_2022_34_12_a6,
     author = {V. A. Sudakov and I. A. Belozerov and E. S. Prudkova},
     title = {Reinforcement machine learning model for sports infrastructure development planning},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--115},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a6/}
}
TY  - JOUR
AU  - V. A. Sudakov
AU  - I. A. Belozerov
AU  - E. S. Prudkova
TI  - Reinforcement machine learning model for sports infrastructure development planning
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 103
EP  - 115
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a6/
LA  - ru
ID  - MM_2022_34_12_a6
ER  - 
%0 Journal Article
%A V. A. Sudakov
%A I. A. Belozerov
%A E. S. Prudkova
%T Reinforcement machine learning model for sports infrastructure development planning
%J Matematičeskoe modelirovanie
%D 2022
%P 103-115
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a6/
%G ru
%F MM_2022_34_12_a6
V. A. Sudakov; I. A. Belozerov; E. S. Prudkova. Reinforcement machine learning model for sports infrastructure development planning. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 103-115. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a6/

[1] A. V. Lotov, I. I. Pospelova, Mnogokriterialnye zadachi priniatiia reshenii, MAKS Press, M., 2008, 197 pp.

[2] A. V. Dutov, V. A. Nesterov, V. A. Sudakov, K. I. Sypalo, “Fuzzy Preference Domains and Their Use for Selecting an Electronic Flight Bag for Flight Crews”, Journal of Computer and Systems Sciences International, 57:2 (2018), 230–238 | DOI | Zbl

[3] G. N. Levchenko, O. S. Zaitsev, N. A. Isakov, V. A. Cherepanov, A. V. Garcev, “Osobennosti specifiki formirovaniia dostupnosti uslug massovogo sporta”, Aktualnye issledovaniia, 2020, no. 15 (18), 85–91 | MR

[4] R. V. Fajzullin, T. N. Ivanova, “Metodika rascheta socia'no-ekonomicheskoi effektivnosti sportivnykh obieektov”, Problemy ekonomiki i menedzhmenta, 2015, no. 11 (51), 83–88

[5] J. Bosch, C. Murillo, J. M. Raya, “The Economic Importance of the Sports Sector and the Economic Impact of Sporting Events”, Sports (and) Economics. Spain: Funcas, 2019, no. 28, 425–446

[6] E. Jelescovic, M. Talovic, I. Rado, I. Mahmutovic, H. Alic, A. Masala, S. Ormanovic, A. Ciric, D. Dedovic, K. Dizdarevic, “Analysis of organizational structure and financial aspects of successful European clubs”, Sport science: International scientific journal of kinesiology, 9:1 (2016), 41–45

[7] R. R. Zaripova, M. R. Sihimbaev, “Otsenka obieekta nedvizhimosti putem ucheta socialnoi effektivnosti ego raboty (na primere sportivnogo sooruzheniia)”, Mezhdunarodnyi studentcheskii nauchnyi vestnik, 2017, no. 5

[8] T. R. Solomahina, E. A. Bobrovskij, “Ocenka vliianiia obespechennosti sportivnoi infrastruktury na vozmozhnosti naseleniia zanimatsia sportom”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2017, no. 3, 133–137

[9] E. R. Akhmetshina, O. A. Ignatjeva, I. M. Ablaev, “Tendencies and Prospects of Public-Private Partnership Development in the Field of Physical Culture and Sport”, European Research Studies Journal, XX:2A (2017), 422–430 | DOI

[10] M. Gordienko, K. Ekimova, N. Glubokova, E. Shuvalova, “Fiscal and investment indicators for evaluating professional sports facilities”, SHS Web of Conf., 89 (2020), 04002 | DOI

[11] O. V. Mkrtychev, V. B. Dorozhinskij, “Analiz konstruktivnykh reshenij i rezultatov raschetov konstrukcii sportivnykh sooruzhenii”, Stroitelstvo, nauka i obrazovanie, 8:2 (2018), 16–27

[12] G. N. Levchenko, O. S. Zajcev, A. V. Garcev, “Algoritm realizatsii finansirovaniia proektov v sfere sporta”, Aktualnye issledovaniia, 2020, no. 15 (18), 97–101 | MR

[13] N. K. Zavriev, I. G. Pospelov, L.Ya. Pospelova, “Issledovanie matematicheskikh modelei ekonomiki sredstvami sistemy EKOMOD”, Matem. modelirovanie, 15:8 (2003), 57–74 | Zbl

[14] B. N. Chetverushkin, V. A. Sudakov, “Factor Modeling for Innovative Enterprises”, Math. Models Comput Simul., 12 (2020), 907–914 | DOI | MR | Zbl

[15] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning combinatorial optimization algorithms over graphs”, Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, Curran Associates Inc., Red Hook, NY, USA, 2017, 6351–6361

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, 2017, arXiv: 1707.06347 | DOI