Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_12_a5, author = {T. S. Kumykov}, title = {Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--102}, publisher = {mathdoc}, volume = {34}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/} }
TY - JOUR AU - T. S. Kumykov TI - Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment JO - Matematičeskoe modelirovanie PY - 2022 SP - 91 EP - 102 VL - 34 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/ LA - ru ID - MM_2022_34_12_a5 ER -
T. S. Kumykov. Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 91-102. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/
[1] V. M. Muchnik, Fizika grozy, Gidrometeoizdat, L., 1974, 351 pp.
[2] M. Imianitov, Elektrizatsiia samoletov v oblakakh i osadkakh, Gidrometeoizdat, L., 1970, 145 pp.
[3] V. V. Uchajkin, Metod drobnykh proizvodnykh, Artishok, Ulianovsk, 2008, 512 pp.
[4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia, Nauka i tekhnika, Minsk, 1987, 688 pp.
[5] A. V. Pskhu, Uravneniia v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.
[6] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theoret. and Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl
[7] V. Kh. Shogenov, M. H. SHkhanukov-Lafishev, H. M. Beshtoev, Drobnye proizvodnye: interpretatsiia i nekotorye primeneniia v fizike, Soobshcheniia obieedinennogo instituta iadernykh issledovanii, Dubna, 1997, 20 pp.
[8] V. KH. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differencirovaniia v teorii brounovskogo dvizheniia”, Izvestiia vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriia: Estestvennye nauki, 2004, no. 1 (125), 46–50
[9] S. Sh. Rekhviashvili, “The Lagrange formalism with fractional derivatives in problems of mechanics”, Technical Physics Letters, 30:1 (2004), 55–57 | DOI
[10] S. Sh. Rekhviashvili, M. O. Mamchuev, “Model of diffusion-drift charge carrier transport in layers with a fractal structure”, Physics of the Solid State, 58:4 (2016), 788–791 | DOI
[11] T. S. Kumykov, “Charge accumulation in thunderstorm clouds: fractal dynamic model”, E3S Web of Conferences, 127 (2019), 01001 | DOI
[12] T. S. Kumykov, “Dinamika zariada oblachnykh kapel vo fraktalnoi srede”, Matematicheskoe modelirovanie, 28:12 (2016), 56–62 | MR | Zbl
[13] A. N. Bogoljubov, A. A. Potapov, S. Sh. Rekhviashvili, “Sposob vvedeniia drobnogo integro-differentsirovaniia v klassicheskoi elektrodinamike”, Vestnik Mosk. un-ta. Ser. 3. Fizika. Astronomiia, 2009, no. 4, 9–12
[14] D. I. Iudin, V. Y. Trakhtengerts, M. Hayakawa, “Fractal dynamics of electric discharges in a thundercloud”, Phys. Rev. E, 68 (2003), 016601 | DOI
[15] F. S. Rys, A. Waldvogel, “Fractal shape of hail clouds”, Phys. Rev. Lett., 56 (1986), 784–787 | DOI
[16] S. Lovejoy, “Area-perimeter relation for rain and cloud areas”, Science, 216 (1982), 185–187 | DOI
[17] I. M. Imyanitov, K. S. SHifrin, “Present state of research on atmospheric electricity”, Soviet Physics Uspekhi, 5:2 (1962), 292–322 | DOI | DOI