Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a model of the formation of "warm" thunderstorms, taking into account the fractal structure of the cloud environment, based on a partial differential equation of fractional order with respect to a time variable. The solution of the model equation is found analytically. The solution of the model is found in an analytical form. The impact of fractal media on charge accumulation and electric field strength in warm thunderstorms is shown using numerical calculations. The data obtained confirm that the electrophysical processes occurring in warm thunderstorms are closely related to the fractal parameters.
Keywords: mathematical model, fractal medium, intensity, electric field, warm thunderstorms
Mots-clés : charge accumulation.
@article{MM_2022_34_12_a5,
     author = {T. S. Kumykov},
     title = {Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/}
}
TY  - JOUR
AU  - T. S. Kumykov
TI  - Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 91
EP  - 102
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/
LA  - ru
ID  - MM_2022_34_12_a5
ER  - 
%0 Journal Article
%A T. S. Kumykov
%T Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment
%J Matematičeskoe modelirovanie
%D 2022
%P 91-102
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/
%G ru
%F MM_2022_34_12_a5
T. S. Kumykov. Modeling of the formation of warm thunderstorms taking into account the fractality of the cloud environment. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 91-102. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a5/

[1] V. M. Muchnik, Fizika grozy, Gidrometeoizdat, L., 1974, 351 pp.

[2] M. Imianitov, Elektrizatsiia samoletov v oblakakh i osadkakh, Gidrometeoizdat, L., 1970, 145 pp.

[3] V. V. Uchajkin, Metod drobnykh proizvodnykh, Artishok, Ulianovsk, 2008, 512 pp.

[4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia, Nauka i tekhnika, Minsk, 1987, 688 pp.

[5] A. V. Pskhu, Uravneniia v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[6] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theoret. and Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl

[7] V. Kh. Shogenov, M. H. SHkhanukov-Lafishev, H. M. Beshtoev, Drobnye proizvodnye: interpretatsiia i nekotorye primeneniia v fizike, Soobshcheniia obieedinennogo instituta iadernykh issledovanii, Dubna, 1997, 20 pp.

[8] V. KH. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differencirovaniia v teorii brounovskogo dvizheniia”, Izvestiia vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriia: Estestvennye nauki, 2004, no. 1 (125), 46–50

[9] S. Sh. Rekhviashvili, “The Lagrange formalism with fractional derivatives in problems of mechanics”, Technical Physics Letters, 30:1 (2004), 55–57 | DOI

[10] S. Sh. Rekhviashvili, M. O. Mamchuev, “Model of diffusion-drift charge carrier transport in layers with a fractal structure”, Physics of the Solid State, 58:4 (2016), 788–791 | DOI

[11] T. S. Kumykov, “Charge accumulation in thunderstorm clouds: fractal dynamic model”, E3S Web of Conferences, 127 (2019), 01001 | DOI

[12] T. S. Kumykov, “Dinamika zariada oblachnykh kapel vo fraktalnoi srede”, Matematicheskoe modelirovanie, 28:12 (2016), 56–62 | MR | Zbl

[13] A. N. Bogoljubov, A. A. Potapov, S. Sh. Rekhviashvili, “Sposob vvedeniia drobnogo integro-differentsirovaniia v klassicheskoi elektrodinamike”, Vestnik Mosk. un-ta. Ser. 3. Fizika. Astronomiia, 2009, no. 4, 9–12

[14] D. I. Iudin, V. Y. Trakhtengerts, M. Hayakawa, “Fractal dynamics of electric discharges in a thundercloud”, Phys. Rev. E, 68 (2003), 016601 | DOI

[15] F. S. Rys, A. Waldvogel, “Fractal shape of hail clouds”, Phys. Rev. Lett., 56 (1986), 784–787 | DOI

[16] S. Lovejoy, “Area-perimeter relation for rain and cloud areas”, Science, 216 (1982), 185–187 | DOI

[17] I. M. Imyanitov, K. S. SHifrin, “Present state of research on atmospheric electricity”, Soviet Physics Uspekhi, 5:2 (1962), 292–322 | DOI | DOI