Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_12_a4, author = {K. E. Plokhotnikov}, title = {On the statistical generator of solutions to the {Schrodinger} equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--90}, publisher = {mathdoc}, volume = {34}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/} }
K. E. Plokhotnikov. On the statistical generator of solutions to the Schrodinger equation. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 75-90. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/
[1] K. E. Plokhotnikov, “About One Method of Numerical Solution of Schrodinger's Equation”, Mathematical Models and Computer Simulations, 12:2 (2020), 221–231 | DOI | MR | Zbl
[2] K. E. Plokhotnikov, “Solving the Schrodinger Equation on the Basis of Finite-Difference and Monte-Carlo Approaches”, J. of Applied Math. and Physics, 9:2 (2021), 328–369 | DOI
[3] Yu. I. Ozhigov, Constructive Physics, Nova Sci, New York, 2012
[4] N. F. Stepanov, Kvantovaia mekhanika i kvantovaia khimiia, Mir, M., 2001
[5] J. Kim, A. T. Baczewski, T. D. Beaudet et al, “QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids”, J. of Phys. Condensed Matter, 30:19 (2018) | DOI
[6] Hartree D.R., The Calculation of Atomic Structures, Wiley, New York, 1957, 271 pp. | MR | Zbl
[7] W. Kohn, “Nobel Lecture: Electronic structure of matter wave functions and density functionals”, Reviews of Modern Physics, 71:5, October (1999), 1253–1266 | DOI | MR
[8] Vedenyapin V.V., Kazakova T.S., Kiselevskaia-Babinina V.Ya., Chetverushkin B.N., “Schrodinger equation as a self-consistent field”, Dokl. Math., 97:3 (2018), 240–242 | DOI | MR | MR | Zbl
[9] K. E. Plokhotnikov, “Numerical Method for Reconstructing the Average Positions of Quantum Particles in a Molecular System”, Math. Mod. Comp. Simul., 13:3 (2021), 372–381 | DOI | MR | Zbl
[10] K. E. Plokhotnikov, “Ob odnom chislennom metode nakhozhdeniia pozitsii iader vodoroda I kisloroda v klastere vody”, Matem. Modelirovanie, 34:4 (2022), 43–58 | MR | Zbl
[11] M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, G. M. Bubnov, “Water dimer and the atmospheric continuum”, Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences, 57:11 (2014), 1083–1098 | DOI | DOI
[12] Mukhopadhyay Anamika, S. Xantheas Sotiris, J. Saykally Richard, “The water dimer II: Theoretical investigations”, Chemical Physics Letters, 700 (2018), 163–175 | DOI
[13] S. Xantheas Sotiris, J. Burnham Christian, J. Harrison Robert, “Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles”, J. of Chem. Phys., 116:4 (2002), 1493–1499 | DOI
[14] Jun Cui, Hanbin Liu, Kenneth D. Jordan, “Theoretical Characterization of the (H$_2$O)$_{21}$ Cluster: Application of an $n$-body Decomposition Procedure”, J. Phys. Chem. B, 110:38 (2006), 18872–18878 | DOI
[15] I. Ignatov, O. Mosin, “Structural Mathematical Models Describing Water Clusters”, Mathematical Theory and Modeling, 3:11 (2013), 72–87
[16] N. Ansari, R. Dandekar, S. Caravati, G. C. Sosso, A. Hassanali, “High and low density patches in simulated liquid water”, J. Chem. Phys., 149 (2018), 204507 | DOI
[17] Yitian Gao, Hongwei Fang, Ke Ni, “A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow”, Scientific Reports, 11:9542 (2021)
[18] A. Michaelides, K. Morgenstern, “Ice nanoclusters at hydrophobic metal surfaces”, Nature Materials, 6 (2007), 597–601 | DOI