On the statistical generator of solutions to the Schrodinger equation
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 75-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the procedure for generating solutions to the Schrödinger equation by the Monte Carlo method. As a demonstration quantum system illustrating this generator, clusters of water: hexamer 6(H$_2$O), dodecamer 12(H$_2$O) and tetradecamer 14(H$_2$O) act. The generator of solutions to the Schrödinger equations is derived from the algorithm proposed by the author earlier, based on the intersection of the finite-difference and Monte Carlo approaches, as well as methods of spatial reduction of scattering centers of particle nuclei and scattering centers of electrons of an arbitrary quantum system, tested on water clusters. As a result of this information, it turned out to be possible to construct an algorithm for generating an unlimited number of different spatial structures of scattering clouds of particle nuclei and electrons at the same dissociation energy of a quantum system.
Keywords: Schrodinger equation solution generator, numerical methods, ordinary differential equations, Monte Carlo method, average positions of quantum system particles, water cluster.
@article{MM_2022_34_12_a4,
     author = {K. E. Plokhotnikov},
     title = {On the statistical generator of solutions to the {Schrodinger} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--90},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/}
}
TY  - JOUR
AU  - K. E. Plokhotnikov
TI  - On the statistical generator of solutions to the Schrodinger equation
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 75
EP  - 90
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/
LA  - ru
ID  - MM_2022_34_12_a4
ER  - 
%0 Journal Article
%A K. E. Plokhotnikov
%T On the statistical generator of solutions to the Schrodinger equation
%J Matematičeskoe modelirovanie
%D 2022
%P 75-90
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/
%G ru
%F MM_2022_34_12_a4
K. E. Plokhotnikov. On the statistical generator of solutions to the Schrodinger equation. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 75-90. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a4/

[1] K. E. Plokhotnikov, “About One Method of Numerical Solution of Schrodinger's Equation”, Mathematical Models and Computer Simulations, 12:2 (2020), 221–231 | DOI | MR | Zbl

[2] K. E. Plokhotnikov, “Solving the Schrodinger Equation on the Basis of Finite-Difference and Monte-Carlo Approaches”, J. of Applied Math. and Physics, 9:2 (2021), 328–369 | DOI

[3] Yu. I. Ozhigov, Constructive Physics, Nova Sci, New York, 2012

[4] N. F. Stepanov, Kvantovaia mekhanika i kvantovaia khimiia, Mir, M., 2001

[5] J. Kim, A. T. Baczewski, T. D. Beaudet et al, “QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids”, J. of Phys. Condensed Matter, 30:19 (2018) | DOI

[6] Hartree D.R., The Calculation of Atomic Structures, Wiley, New York, 1957, 271 pp. | MR | Zbl

[7] W. Kohn, “Nobel Lecture: Electronic structure of matter wave functions and density functionals”, Reviews of Modern Physics, 71:5, October (1999), 1253–1266 | DOI | MR

[8] Vedenyapin V.V., Kazakova T.S., Kiselevskaia-Babinina V.Ya., Chetverushkin B.N., “Schrodinger equation as a self-consistent field”, Dokl. Math., 97:3 (2018), 240–242 | DOI | MR | MR | Zbl

[9] K. E. Plokhotnikov, “Numerical Method for Reconstructing the Average Positions of Quantum Particles in a Molecular System”, Math. Mod. Comp. Simul., 13:3 (2021), 372–381 | DOI | MR | Zbl

[10] K. E. Plokhotnikov, “Ob odnom chislennom metode nakhozhdeniia pozitsii iader vodoroda I kisloroda v klastere vody”, Matem. Modelirovanie, 34:4 (2022), 43–58 | MR | Zbl

[11] M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, G. M. Bubnov, “Water dimer and the atmospheric continuum”, Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences, 57:11 (2014), 1083–1098 | DOI | DOI

[12] Mukhopadhyay Anamika, S. Xantheas Sotiris, J. Saykally Richard, “The water dimer II: Theoretical investigations”, Chemical Physics Letters, 700 (2018), 163–175 | DOI

[13] S. Xantheas Sotiris, J. Burnham Christian, J. Harrison Robert, “Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles”, J. of Chem. Phys., 116:4 (2002), 1493–1499 | DOI

[14] Jun Cui, Hanbin Liu, Kenneth D. Jordan, “Theoretical Characterization of the (H$_2$O)$_{21}$ Cluster: Application of an $n$-body Decomposition Procedure”, J. Phys. Chem. B, 110:38 (2006), 18872–18878 | DOI

[15] I. Ignatov, O. Mosin, “Structural Mathematical Models Describing Water Clusters”, Mathematical Theory and Modeling, 3:11 (2013), 72–87

[16] N. Ansari, R. Dandekar, S. Caravati, G. C. Sosso, A. Hassanali, “High and low density patches in simulated liquid water”, J. Chem. Phys., 149 (2018), 204507 | DOI

[17] Yitian Gao, Hongwei Fang, Ke Ni, “A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow”, Scientific Reports, 11:9542 (2021)

[18] A. Michaelides, K. Morgenstern, “Ice nanoclusters at hydrophobic metal surfaces”, Nature Materials, 6 (2007), 597–601 | DOI