Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 20-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new conditionally Eulerian-Lagrangian numerical method has been developed for solving a number of problems in which the object of study is concentrated in a region of changing configuration, and the movement within the region is described by a system of equations of a two-dimensional continuous medium. A modification of the computational scheme of "particles in cells" on adaptive Euler grids is presented on the example of solving the problem of the dynamics of an intrathermocline vortex lens. The basic equations are equations of the "shallow water" type. The area in which the fields of the lens parameters are determined is the desired one and is determined in the course of the solution. A study of the artificial viscosity of the numerical scheme is carried out, the results of testing the method and examples of computational experiments are presented.
Keywords: particle-in-cell numerical method, scheme viscosity.
Mots-clés : vortex lens
@article{MM_2022_34_12_a1,
     author = {S. N. Zatsepa and A. A. Ivchenko and V. V. Solbakov},
     title = {Conditionally {Euler--Lagrange} method on the example of the problem on the dynamics of an intra thermocline vortex lens},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--42},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/}
}
TY  - JOUR
AU  - S. N. Zatsepa
AU  - A. A. Ivchenko
AU  - V. V. Solbakov
TI  - Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 20
EP  - 42
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/
LA  - ru
ID  - MM_2022_34_12_a1
ER  - 
%0 Journal Article
%A S. N. Zatsepa
%A A. A. Ivchenko
%A V. V. Solbakov
%T Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens
%J Matematičeskoe modelirovanie
%D 2022
%P 20-42
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/
%G ru
%F MM_2022_34_12_a1
S. N. Zatsepa; A. A. Ivchenko; V. V. Solbakov. Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 20-42. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/

[1] J. E. Simpson, Gravity Currents: In the Environment and the Laboratory, Cambridge University Press, Cambridge, UK, 1997, 244 pp.

[2] M. Ungarish, An Introduction to Gravity Currents and Intrusions, Chapman Hall/CRC Press, Boca Raton, 2009, 503 pp. | MR

[3] S. N. Zatsepa, S. N. Ovsienko, “Imitatsionnoe modelirovanie dinamiki neftianogo razliva”, Tezisy dokladov, III sieezd sovetskikh okeanologov (Leningrad, 1987), 98–99

[4] S. N. Ovsienko, “O primenenii metoda chastits v iacheikakh dlia chislennogo modelirovaniia dreifa lda”, Trudy Gidromettsentra SSSR, 1978, no. 200, 41–48

[5] S. N. Ovsienko, V. O. Efroimson, “K teorii dinamicheskogo i termicheskogo pereraspredelenii lda v more”, Issledovanie ledianogo pokrova Severo-Zapadnykh morei, Nauka, M., 1983, 8–19

[6] S. N. Ovsienko, S. N. Zatsepa, A. A. Ivchenko, Issledovanie dinamicheskoi struktury vnutritermoklinnoi vikhrevoi linzy (VVL), Otchet o NIR RFFI, 1996, 96-05-65994-a

[7] S. N. Ovsienko, S. N. Zatsepa, A. A. Ivchenko, “Matematicheskoe modelirovanie dinamiki vnutritermoklinnoi vikhrevoi linzy”, Trudy GOINa, 211, Gidrometizdat, 2008, 65–83

[8] P. Rouch, Computational Fluid Dynamics, Hermosa Publishers, 1976, 446 pp. | MR

[9] S. A. Ivanenko, A. A. CHarakhchian, “Algoritm postroeniia krivolineinykh setok iz vypuklykh chetyrekhugolnikov”, Dokl. AN SSSR, 295:2 (1987), 280–283 | Zbl

[10] J. F. Thompson, Z. U. A. Warsi, C. W. Mastin, “Boundary-fitted coordinate systems for numerical solution of partial differential equations a review”, J. of Comp. Phys., 47:1 (1982), 1–108 | DOI | MR | Zbl

[11] H. Takewaki, A. Nishiguchi, T. Yabe, “Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations”, J. of Comp. Physics, 61:2 (1985), 261–268 | DOI | MR | Zbl

[12] H. Takewaki, T. Yabe, “The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations”, J. of Comp. Phys., 70:2 (1987), 355–372 | DOI | MR | Zbl

[13] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981, 509 pp.

[14] S. V. Bogomolov, K. V. Kuznetsov, “Metod chastits dlia sistemy uravnenii gazovoi dinamiki”, Matem. modelirovanie, 10:7 (1998), 93–100 | MR | Zbl

[15] S. V. Bogomolov, E. V. Zakharov, S. V. Zerkal, “Modelirovanie voln na melkoi vode metodom chastits”, Matem. modelirovanie, 14:3 (2002), 103–116 | MR | Zbl

[16] A. S. Monin, G. M. Zhikharev, “Ocean eddies”, Sov. Phys. Usp., 33:5 (1990), 313–339 | DOI | DOI

[17] B. N. Filiushkin, D. L. Aleinik, V. M. Gruzinov, N. G. Kozhelupova, “Termokhalinnaia struktura vod v raionakh dinamicheskogo razrusheniia sredizemnomorskikh linz”, Trudy GOIN, 208, Gidrometeoizdat, M., 2002, 15–32

[18] B. N. Filiushkin, N. G. Kozhelupova, “Obzor issledovanii sredizemnomorskikh vnutritermoklinnykh vikhrei v Atlanticheskom okeane”, Okeanologicheskie issledovaniia, 48:3 (2020), 123–147

[19] B. Coushman-Rozin, W. H. Heil, D. Nof, “Oscillations and rotations of elliptical warm-core rings”, J. Geophys. Res., 90:11 (1985), 756–764

[20] B. Coushman-Rozin, “Exact analytical solutions for elliptical warm-core rings”, Tellus, 39A (1987), 235–244 | DOI

[21] A. Rubino, S. Dotsenko, “The stratified pulson”, J. Phys. Oceanography, 36 (2006), 711–719 | DOI | MR

[22] A. Rubino, S. Dotsenko, “Frictionally Decaying Frontal Warm-Core Eddies”, Physical Oceanography, 27:4 (2020), 442–453 | DOI

[23] W. R. Young, “Elliptical vortices in shallow water”, J. Fluid Mech., 171 (1986), 101–119 | DOI | Zbl

[24] E. V. Zharnitskii, “Analiticheskaia model dinamiki arkticheskoi vikhrevoi linzy”, Okeanologiia, 30:5 (1990), 736–742

[25] E. V. Zharnitskii, “K dinamike ellipticheskogo vikhria so svobodnoi poverkhnostiu”, Okeanologiia, 32:3 (1992), 436–445

[26] S. N. Zatsepa, V. V. Galushko, “O dinamike zhidkoi linzy v dvusloino-stratifitsirovannoi srede”, Trudy GOINa, 212 (2009), 226–238

[27] C. Rogers, W. K. Schief, “The pulsrodon in 2+1-dimensional magneto-gasdynamics: Hamiltonian structure and integrability”, J. Math. Phys., 52:8 (2011), 083701 | DOI | MR | Zbl

[28] C. Rogers, W. K. Schief, “On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system”, Nonlinearity, 24:11 (2011), 3165 | DOI | MR | Zbl

[29] A. G. Kostianoi, G. I. SHapiro, “Evoliutsiia i struktura vnutritermoklinnogo vikhria”, Izvestiia AN SSSR, FAO, 22:10 (1986), 1098–1105

[30] M. A. Sokolovskii, B. N. Filiushkin, O. I. IAkovenko, N. G. Kozhelupova, “CHislennoe modelirovanie vzaimodeistviia mezomasshtabnogo vikhria i vnutritermoklinnykh linz”, Trudy GOINa, 216 (2015), 24–47

[31] L. I. Sedov, Mekhanika sploshnoi sredy, Nauka, M., 1970, 492 pp. | MR

[32] F.H. Harlow, “The Particle-in-Cell Computing Method in Fluid Dynamics”, Fundamental Methods in Hydrodynamics, 3, 319–343 (Methods Comput. Phys.: Advances in Research and Applications)

[33] M. W. Evans, F. H. Harlow, The particle-in-cell method for hydrodynamic calculations, Los Alamos Scientific Lab. Rep. No LA-2139, 1957

[34] S. E. McDowell, H. T. Rossby, “Mediterrian water: An intense mesoscale eddy of the Bagamas”, Science, 202 (1978), 1085–1087 | DOI

[35] A. Rubino, P. Brandt, “Warm-core eddies studied by laboratory experiments and numerical modeling”, J. Phys. Oceanography, 33 (2003), 431–435 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[36] M. Ungarish, Gravity Currents and Intrusions, Analysis and Prediction, Environmental Fluid Mechanics, 1, World Scientific, 2020, 786 pp. | MR