Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_12_a1, author = {S. N. Zatsepa and A. A. Ivchenko and V. V. Solbakov}, title = {Conditionally {Euler--Lagrange} method on the example of the problem on the dynamics of an intra thermocline vortex lens}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--42}, publisher = {mathdoc}, volume = {34}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/} }
TY - JOUR AU - S. N. Zatsepa AU - A. A. Ivchenko AU - V. V. Solbakov TI - Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens JO - Matematičeskoe modelirovanie PY - 2022 SP - 20 EP - 42 VL - 34 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/ LA - ru ID - MM_2022_34_12_a1 ER -
%0 Journal Article %A S. N. Zatsepa %A A. A. Ivchenko %A V. V. Solbakov %T Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens %J Matematičeskoe modelirovanie %D 2022 %P 20-42 %V 34 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/ %G ru %F MM_2022_34_12_a1
S. N. Zatsepa; A. A. Ivchenko; V. V. Solbakov. Conditionally Euler--Lagrange method on the example of the problem on the dynamics of an intra thermocline vortex lens. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 20-42. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a1/
[1] J. E. Simpson, Gravity Currents: In the Environment and the Laboratory, Cambridge University Press, Cambridge, UK, 1997, 244 pp.
[2] M. Ungarish, An Introduction to Gravity Currents and Intrusions, Chapman Hall/CRC Press, Boca Raton, 2009, 503 pp. | MR
[3] S. N. Zatsepa, S. N. Ovsienko, “Imitatsionnoe modelirovanie dinamiki neftianogo razliva”, Tezisy dokladov, III sieezd sovetskikh okeanologov (Leningrad, 1987), 98–99
[4] S. N. Ovsienko, “O primenenii metoda chastits v iacheikakh dlia chislennogo modelirovaniia dreifa lda”, Trudy Gidromettsentra SSSR, 1978, no. 200, 41–48
[5] S. N. Ovsienko, V. O. Efroimson, “K teorii dinamicheskogo i termicheskogo pereraspredelenii lda v more”, Issledovanie ledianogo pokrova Severo-Zapadnykh morei, Nauka, M., 1983, 8–19
[6] S. N. Ovsienko, S. N. Zatsepa, A. A. Ivchenko, Issledovanie dinamicheskoi struktury vnutritermoklinnoi vikhrevoi linzy (VVL), Otchet o NIR RFFI, 1996, 96-05-65994-a
[7] S. N. Ovsienko, S. N. Zatsepa, A. A. Ivchenko, “Matematicheskoe modelirovanie dinamiki vnutritermoklinnoi vikhrevoi linzy”, Trudy GOINa, 211, Gidrometizdat, 2008, 65–83
[8] P. Rouch, Computational Fluid Dynamics, Hermosa Publishers, 1976, 446 pp. | MR
[9] S. A. Ivanenko, A. A. CHarakhchian, “Algoritm postroeniia krivolineinykh setok iz vypuklykh chetyrekhugolnikov”, Dokl. AN SSSR, 295:2 (1987), 280–283 | Zbl
[10] J. F. Thompson, Z. U. A. Warsi, C. W. Mastin, “Boundary-fitted coordinate systems for numerical solution of partial differential equations a review”, J. of Comp. Phys., 47:1 (1982), 1–108 | DOI | MR | Zbl
[11] H. Takewaki, A. Nishiguchi, T. Yabe, “Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations”, J. of Comp. Physics, 61:2 (1985), 261–268 | DOI | MR | Zbl
[12] H. Takewaki, T. Yabe, “The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations”, J. of Comp. Phys., 70:2 (1987), 355–372 | DOI | MR | Zbl
[13] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981, 509 pp.
[14] S. V. Bogomolov, K. V. Kuznetsov, “Metod chastits dlia sistemy uravnenii gazovoi dinamiki”, Matem. modelirovanie, 10:7 (1998), 93–100 | MR | Zbl
[15] S. V. Bogomolov, E. V. Zakharov, S. V. Zerkal, “Modelirovanie voln na melkoi vode metodom chastits”, Matem. modelirovanie, 14:3 (2002), 103–116 | MR | Zbl
[16] A. S. Monin, G. M. Zhikharev, “Ocean eddies”, Sov. Phys. Usp., 33:5 (1990), 313–339 | DOI | DOI
[17] B. N. Filiushkin, D. L. Aleinik, V. M. Gruzinov, N. G. Kozhelupova, “Termokhalinnaia struktura vod v raionakh dinamicheskogo razrusheniia sredizemnomorskikh linz”, Trudy GOIN, 208, Gidrometeoizdat, M., 2002, 15–32
[18] B. N. Filiushkin, N. G. Kozhelupova, “Obzor issledovanii sredizemnomorskikh vnutritermoklinnykh vikhrei v Atlanticheskom okeane”, Okeanologicheskie issledovaniia, 48:3 (2020), 123–147
[19] B. Coushman-Rozin, W. H. Heil, D. Nof, “Oscillations and rotations of elliptical warm-core rings”, J. Geophys. Res., 90:11 (1985), 756–764
[20] B. Coushman-Rozin, “Exact analytical solutions for elliptical warm-core rings”, Tellus, 39A (1987), 235–244 | DOI
[21] A. Rubino, S. Dotsenko, “The stratified pulson”, J. Phys. Oceanography, 36 (2006), 711–719 | DOI | MR
[22] A. Rubino, S. Dotsenko, “Frictionally Decaying Frontal Warm-Core Eddies”, Physical Oceanography, 27:4 (2020), 442–453 | DOI
[23] W. R. Young, “Elliptical vortices in shallow water”, J. Fluid Mech., 171 (1986), 101–119 | DOI | Zbl
[24] E. V. Zharnitskii, “Analiticheskaia model dinamiki arkticheskoi vikhrevoi linzy”, Okeanologiia, 30:5 (1990), 736–742
[25] E. V. Zharnitskii, “K dinamike ellipticheskogo vikhria so svobodnoi poverkhnostiu”, Okeanologiia, 32:3 (1992), 436–445
[26] S. N. Zatsepa, V. V. Galushko, “O dinamike zhidkoi linzy v dvusloino-stratifitsirovannoi srede”, Trudy GOINa, 212 (2009), 226–238
[27] C. Rogers, W. K. Schief, “The pulsrodon in 2+1-dimensional magneto-gasdynamics: Hamiltonian structure and integrability”, J. Math. Phys., 52:8 (2011), 083701 | DOI | MR | Zbl
[28] C. Rogers, W. K. Schief, “On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system”, Nonlinearity, 24:11 (2011), 3165 | DOI | MR | Zbl
[29] A. G. Kostianoi, G. I. SHapiro, “Evoliutsiia i struktura vnutritermoklinnogo vikhria”, Izvestiia AN SSSR, FAO, 22:10 (1986), 1098–1105
[30] M. A. Sokolovskii, B. N. Filiushkin, O. I. IAkovenko, N. G. Kozhelupova, “CHislennoe modelirovanie vzaimodeistviia mezomasshtabnogo vikhria i vnutritermoklinnykh linz”, Trudy GOINa, 216 (2015), 24–47
[31] L. I. Sedov, Mekhanika sploshnoi sredy, Nauka, M., 1970, 492 pp. | MR
[32] F.H. Harlow, “The Particle-in-Cell Computing Method in Fluid Dynamics”, Fundamental Methods in Hydrodynamics, 3, 319–343 (Methods Comput. Phys.: Advances in Research and Applications)
[33] M. W. Evans, F. H. Harlow, The particle-in-cell method for hydrodynamic calculations, Los Alamos Scientific Lab. Rep. No LA-2139, 1957
[34] S. E. McDowell, H. T. Rossby, “Mediterrian water: An intense mesoscale eddy of the Bagamas”, Science, 202 (1978), 1085–1087 | DOI
[35] A. Rubino, P. Brandt, “Warm-core eddies studied by laboratory experiments and numerical modeling”, J. Phys. Oceanography, 33 (2003), 431–435 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[36] M. Ungarish, Gravity Currents and Intrusions, Analysis and Prediction, Environmental Fluid Mechanics, 1, World Scientific, 2020, 786 pp. | MR