Pandemic forecasting by machine learning in a decision support problem
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 107-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes an approach that allows, based on fairly simple models, to propose an approach to predicting the decision of the governing bodies on the number of necessary medical centers to combat the pandemic. This approach is based on the idea that the decision to open a new center is not made immediately with the overflow of existing centers, but with some delay. Thus, the government is trying to minimize the risks of unnecessary opening and makes this decision, realizing that the congestion of existing centers will not end in the short term. This decision can be predicted by training the model on historical data obtained from open sources. We have developed a model that can be trained on historical data and allows forecasting the number of medical centers based on a forecast of the number of hospitalized patients for 14 days. Approaches are proposed for predicting the number of hospitalized patients with accuracy sufficient for the model to predict the number of medical centers. The models were tested on data from open sources obtained for the Ryazan region. For the forecast model for the number of open medical centers in the Ryazan region, penalty functions are determined and the corresponding coefficients are calculated.
Keywords: decision support, predicting the number of medical centers, resource management, penalty function.
@article{MM_2022_34_11_a6,
     author = {V. A. Sudakov and Yu. P. Titov},
     title = {Pandemic forecasting by machine learning in a decision support problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/}
}
TY  - JOUR
AU  - V. A. Sudakov
AU  - Yu. P. Titov
TI  - Pandemic forecasting by machine learning in a decision support problem
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 107
EP  - 122
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/
LA  - ru
ID  - MM_2022_34_11_a6
ER  - 
%0 Journal Article
%A V. A. Sudakov
%A Yu. P. Titov
%T Pandemic forecasting by machine learning in a decision support problem
%J Matematičeskoe modelirovanie
%D 2022
%P 107-122
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/
%G ru
%F MM_2022_34_11_a6
V. A. Sudakov; Yu. P. Titov. Pandemic forecasting by machine learning in a decision support problem. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 107-122. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/

[1] Ofitsialnaia informatsiia o koronaviruse v Rossii (accessed 08.03.2022)

[2] Pravitelstvo Riazanskoj oblasti. Koronavirusnaia infektsiia. Aktualnaia informatsiia (accessed 08.03.2022)

[3] Federalnaia sluzhba gosudarstvennoj statistiki. Statistika protiv COVID-19 (accessed 08.03.2022)

[4] Our World in Data. Coronavirus Pandemic (COVID-19), (accessed 08.03.2022) https://ourworldindata.org/coronavirus

[5] Data on COVID-19 (coronavirus) by Our World in Data, (accessed 08.03.2022) https://github.com/owid/covid-19-data/tree/master/public/data/

[6] Worldometer COVID-19 Data, (accessed 08.03.2022) https://www.worldometers.info/coronavirus/about/

[7] S. K. Mohapatra, B. G. Assefa, G. Belayneh, “A SVM Based Model for COVID Detection Using CXR Image”, ICAST 2021: Advances of Science and Technology, Lecture Notes of Institute for Computer Sci., Social Informatics and Telecommunications Eng., 411, eds. Berihun M.L., Springer, Cham, 2022 | DOI

[8] M. O. Arowolo, R. O. Ogundokun, S. Misra, A. F. Kadri, T. O. Aduragba, “Machine Learning Approach Using KPCA-SVMs for Predicting COVID-19”, Healthcare Informatics for Fighting COVID-19 and Future Epidemics, EAI/Springer Innovations in Communication and Computing, eds. Garg L., Chakraborty C., Mahmoudi S., Sohmen V.S., Springer, Cham, 2022 | DOI

[9] R. Assawab, A. Elzaar, A. El Allati, N. Benaya, B. Benyacoub, “PCA SVM and Xgboost Al-gorithms for Covid-19 Recognition in Chest X-Ray Images”, Advanced Technologies for Humanity. ICATH 2021, Lecture Notes on Data Engineering and Communications Technologies, 110, Springer, Cham, 2022 | DOI

[10] L. K. Sowmya Sundari, Syed T. Ahmed, K. Anitha, M. K. Pushpa, “COVID-19 Outbreak Based Coronary Heart Diseases (CHD) Prediction Using SVM and Risk Factor Validation”, 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 1–5 | DOI

[11] C. Nalini, R. Shantha Kumari, M. Bhuvaneswari, V. S. Dheepthikaa, M. L. Nandhini, “Development of forecasting model for infectious disease (COVID-19)”, AIP Conference Proceedings, 2387 (2021), 040004 | DOI

[12] Saheed Oladele Amusat, Forecasting the Epidemiological Impact of Coronavirus Disease (COVID-19): Pre-vaccination Era, medRxiv, 2021 | DOI | Zbl

[13] G. R. Shinde, A. B. Kalamkar, P. N. Mahalle et al, “Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art”, SN COMPUT. SCI, 2020, no. 1, 197 | DOI

[14] N. I. Eremeeva, “Postroenie modifikacii SEIRD-modeli rasprostraneniya epidemii, uchityvayushchej osobennosti COVID-19”, Vestnik TvGU. Seriya Prikladnaya matematika, 2020, no. 4, 14–27 | DOI

[15] T. Rapolu, B. Nutakki, T. Sobha Rani, S. Durga Bhavani, “A Time-Dependent SEIRD Mod-el for Forecasting the Transmission Dynamics in Infectious Diseases: COVID-19”, Proc. of Inter. Conf. on Data Science and Applications, Lecture Notes in Networks and Systems, 287, Springer, Singapore, 2022 | DOI

[16] T. Aliyeva, U. Rzayeva, R. Azizova, “A SEIRD Model for Control of COVID-19: Case of Azerbaijan”, SHS Web of Conf., 2021, no. 92 | DOI

[17] K. Menda, L. Laird, M. J. Kochenderfer et al., “Explaining COVID-19 outbreaks with reactive SEIRD models”, Sci Rep, 2021, no. 11 | DOI

[18] P. Mahalle, A. B. Kalamkar, N. Dey, J. Chaki, A. Hassanien, G. R. Shinde, Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art, TechRxiv. Preprint, 2020 | DOI

[19] X. Zhu, A. Zhang, S. Xu, P. Jia, X. Tan, J. Tian, Spatially Explicit Modeling of 2019-nCoV Epidemic Trend based on Mobile Phone Data in Mainland China, medRxiv, 2020 | DOI