Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_11_a6, author = {V. A. Sudakov and Yu. P. Titov}, title = {Pandemic forecasting by machine learning in a decision support problem}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {107--122}, publisher = {mathdoc}, volume = {34}, number = {11}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/} }
TY - JOUR AU - V. A. Sudakov AU - Yu. P. Titov TI - Pandemic forecasting by machine learning in a decision support problem JO - Matematičeskoe modelirovanie PY - 2022 SP - 107 EP - 122 VL - 34 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/ LA - ru ID - MM_2022_34_11_a6 ER -
V. A. Sudakov; Yu. P. Titov. Pandemic forecasting by machine learning in a decision support problem. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 107-122. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a6/
[1] Ofitsialnaia informatsiia o koronaviruse v Rossii (accessed 08.03.2022)
[2] Pravitelstvo Riazanskoj oblasti. Koronavirusnaia infektsiia. Aktualnaia informatsiia (accessed 08.03.2022)
[3] Federalnaia sluzhba gosudarstvennoj statistiki. Statistika protiv COVID-19 (accessed 08.03.2022)
[4] Our World in Data. Coronavirus Pandemic (COVID-19), (accessed 08.03.2022) https://ourworldindata.org/coronavirus
[5] Data on COVID-19 (coronavirus) by Our World in Data, (accessed 08.03.2022) https://github.com/owid/covid-19-data/tree/master/public/data/
[6] Worldometer COVID-19 Data, (accessed 08.03.2022) https://www.worldometers.info/coronavirus/about/
[7] S. K. Mohapatra, B. G. Assefa, G. Belayneh, “A SVM Based Model for COVID Detection Using CXR Image”, ICAST 2021: Advances of Science and Technology, Lecture Notes of Institute for Computer Sci., Social Informatics and Telecommunications Eng., 411, eds. Berihun M.L., Springer, Cham, 2022 | DOI
[8] M. O. Arowolo, R. O. Ogundokun, S. Misra, A. F. Kadri, T. O. Aduragba, “Machine Learning Approach Using KPCA-SVMs for Predicting COVID-19”, Healthcare Informatics for Fighting COVID-19 and Future Epidemics, EAI/Springer Innovations in Communication and Computing, eds. Garg L., Chakraborty C., Mahmoudi S., Sohmen V.S., Springer, Cham, 2022 | DOI
[9] R. Assawab, A. Elzaar, A. El Allati, N. Benaya, B. Benyacoub, “PCA SVM and Xgboost Al-gorithms for Covid-19 Recognition in Chest X-Ray Images”, Advanced Technologies for Humanity. ICATH 2021, Lecture Notes on Data Engineering and Communications Technologies, 110, Springer, Cham, 2022 | DOI
[10] L. K. Sowmya Sundari, Syed T. Ahmed, K. Anitha, M. K. Pushpa, “COVID-19 Outbreak Based Coronary Heart Diseases (CHD) Prediction Using SVM and Risk Factor Validation”, 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 1–5 | DOI
[11] C. Nalini, R. Shantha Kumari, M. Bhuvaneswari, V. S. Dheepthikaa, M. L. Nandhini, “Development of forecasting model for infectious disease (COVID-19)”, AIP Conference Proceedings, 2387 (2021), 040004 | DOI
[12] Saheed Oladele Amusat, Forecasting the Epidemiological Impact of Coronavirus Disease (COVID-19): Pre-vaccination Era, medRxiv, 2021 | DOI | Zbl
[13] G. R. Shinde, A. B. Kalamkar, P. N. Mahalle et al, “Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art”, SN COMPUT. SCI, 2020, no. 1, 197 | DOI
[14] N. I. Eremeeva, “Postroenie modifikacii SEIRD-modeli rasprostraneniya epidemii, uchityvayushchej osobennosti COVID-19”, Vestnik TvGU. Seriya Prikladnaya matematika, 2020, no. 4, 14–27 | DOI
[15] T. Rapolu, B. Nutakki, T. Sobha Rani, S. Durga Bhavani, “A Time-Dependent SEIRD Mod-el for Forecasting the Transmission Dynamics in Infectious Diseases: COVID-19”, Proc. of Inter. Conf. on Data Science and Applications, Lecture Notes in Networks and Systems, 287, Springer, Singapore, 2022 | DOI
[16] T. Aliyeva, U. Rzayeva, R. Azizova, “A SEIRD Model for Control of COVID-19: Case of Azerbaijan”, SHS Web of Conf., 2021, no. 92 | DOI
[17] K. Menda, L. Laird, M. J. Kochenderfer et al., “Explaining COVID-19 outbreaks with reactive SEIRD models”, Sci Rep, 2021, no. 11 | DOI
[18] P. Mahalle, A. B. Kalamkar, N. Dey, J. Chaki, A. Hassanien, G. R. Shinde, Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art, TechRxiv. Preprint, 2020 | DOI
[19] X. Zhu, A. Zhang, S. Xu, P. Jia, X. Tan, J. Tian, Spatially Explicit Modeling of 2019-nCoV Epidemic Trend based on Mobile Phone Data in Mainland China, medRxiv, 2020 | DOI