Aspects of computer simulation of transport and cleaning processes from cuttings in horizontal well sections
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 77-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relevance of research is related to the need to form clear ideas about the factors of successful drilling operations and make a number of generalizations to existing methods for predicting the transport and cleaning of wells with a horizontal section, taking into account the features and patterns of drilling fluid flow in real drilling modes. The purpose of the work: to study the features of the spatial flow of a mixture of drilling fluid with solid particles in the coaxial and eccentric areas of the well; to establish the patterns of the developing steady flow of the mixture through the well; to issue recommendations for the practice of applied calculations for the improvement of the well cleaning process by hydraulic methods. A well with a 12-meter horizontal eccentric section was chosen as the object of study, in which the flow is carried out under conditions that are as close as possible to actual drilling parameters. The universal key to understanding the features and identifying the patterns of the processes considered in the work are the methods of mechanics of inhomogeneous continuums for viscous homogeneous and heterogeneous mixtures, computational fluid dynamics (CFD) combined with the ideas of a complex physical, mathematical and numerical study of internal flows of rheologically complex viscous media. It has been established that particles can significantly affect the structure of the averaged and pulsating flow of a droplet liquid, their settling leads to the formation of an inhomogeneous anisotropic flow structure, the calculation of which requires modern two parameter turbulence models for Reynolds stresses. It is shown that in the bottom region of the annular space there is a zone with equivalent phase velocities, where the effects of a decrease in the intensity of molar transfer are manifested with an increase in the size of the sediment layer. Real drilling conditions are characterized by processes that accompany laminarization and stabilization of the mixture flow along the entire length of the well; near the boundary of the fixed layer of settled particles, a narrow layer of their suspended state is formed. Moreover, the flow of cuttings particles from the reservoir surface, as well as their transition to a suspended state, is mainly determined by convective-diffusion mechanisms, the intensity of the pulsating small-scale movement of vortices with an anisotropic structure, and the presence of local areas with “moderately high” flow velocities in contact with a curvilinear unstable to small disturbances section surface. The conditions for the formation of a stagnant zone, in which sedimentation and growth in the size of deposits are intense, are noted. In practice, a technology and algorithm for modeling the process of interaction of two-phase flows with the walls of an eccentric pipe, based on demonstrations of CFD capabilities, is recommended. As well as conclusions on improving the criterion relationships for determining the minimum flow rates of the drilling fluid, taking into account the correction of parameters characterizing the rheological features of the mixture, the intensity of turbulence, the geometry of the annular space and connecting nodes.
Keywords: well, drilling, annular flows, eccentricity, hydrodynamics, rheology, heterogeneity, closures, cuttings, cleaning.
Mots-clés : rotation, core, simulation, turbulence, transport, sedimentation
@article{MM_2022_34_11_a5,
     author = {S. N. Kharlamov and M. Janghorbani and M. R. Bryksin},
     title = {Aspects of computer simulation of transport and cleaning processes from cuttings in horizontal well sections},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--106},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a5/}
}
TY  - JOUR
AU  - S. N. Kharlamov
AU  - M. Janghorbani
AU  - M. R. Bryksin
TI  - Aspects of computer simulation of transport and cleaning processes from cuttings in horizontal well sections
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 77
EP  - 106
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a5/
LA  - ru
ID  - MM_2022_34_11_a5
ER  - 
%0 Journal Article
%A S. N. Kharlamov
%A M. Janghorbani
%A M. R. Bryksin
%T Aspects of computer simulation of transport and cleaning processes from cuttings in horizontal well sections
%J Matematičeskoe modelirovanie
%D 2022
%P 77-106
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a5/
%G ru
%F MM_2022_34_11_a5
S. N. Kharlamov; M. Janghorbani; M. R. Bryksin. Aspects of computer simulation of transport and cleaning processes from cuttings in horizontal well sections. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 77-106. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a5/

[1] S. N. Kharlamov, D. S. Fatyanov, “Issledovanie struktury turbulentnogo potoka prirodnogo syr'ya v truboprovodach s sekchiey peremennogo po dline poperechnogo secheniya konfuzorno-diffuzornogo tipa”, Izv. Tomskogo politekhn. Universiteta. Inzhiniring georesursov, 331:8 (2020), 53–67 | DOI

[2] S. N. Kharlamov, D. S. Fatyanov, “Modelirovanie prostranstvennych techenii vyazkich sred v sisteme kanalov s uchastkami soedinenii slozchnoy formy”, Izv. Tomskogo politekhn. Universiteta. Inzhiniring georesursov, 332:5 (2021), 70–88 | DOI

[3] S. N. Kharlamov, M. Janghorbani, K. A. Filippov, “Matematicheskoe modelirovanie I metody issledovaniya gidrodinamicheskoy ochistki skvazhin”, Izv. Tomskogo politekhn. Universiteta. Inzhiniring georesursov, 332:8 (2021), 53–73 | DOI

[4] S. N. Kharlamov, M. Janghorbani, Chislennoe modelirovanie techeniy vyaskich smesey boorovogo schlama I potoka syroy nefti na gorizontalniech ucthastkach skvazchin s ekstsentricynymi boorilnymi troobami, http://gubkin-trofimuk2021.ipgg.sbras.ru/prepare_materials

[5] S. N. Kharlamov, M. Janghorbani, “Chislennoe issledovanie viazkostno-inertsionnogo laminarnogo zakruchennogo techeniia v krugloi trube s ekstsentrichnym kruglym iadrom”, Izvestiia Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 332:11 (2021), 7–21 | DOI

[6] Bilgesu H.I., Ali M.W., Aminian K., Ameri S., “Computational Fluid Dynamics (CFD) as a tool to study cutting transport in wellbores”, The Eastern Regional Meeting of the Society of Petroleum Engineers (Lexington, Kentucky, USA, October 2002), 27 pp. | DOI

[7] S. M. Han, H. Young Kyu, W. Nam Sub, K. Young Ju, “Solid-liquid hydrodynamics in a slim hole drilling annulus”, Journal of Petroleum Science and Engineering, 70:3-4 (2010), 308–319 | DOI

[8] U. Mme, Pål Skalle, “CFD calculations of cuttings transport through drilling annuli at various angles”, International J. of Petroleum Sci. and Technology, 6:2 (2012), 129–141

[9] Z. Xiao-Hua, C. Sun, H. Tong, “Distribution features, transport mechanism and destruction of cuttings bed in horizontal well”, Journal of Hydrodynamics, 25:4 (2013), 628–638 | DOI

[10] S. Xiaofeng, K. Wang, T. Yan, S. Shao, J. Jiao, “Effect of drillpipe rotation on cuttings transport using computational fluid dynamics (CFD) in complex structure wells”, J. of Petr. Exploration Prod. Technol., 4:3 (2014), 255–261 | DOI

[11] Demiralp Yasin, Effects of Drill-pipe Whirling Motion on Cuttings Transport Performance for Horizontal Drilling, MSc thesis, Louisiana State University, 2014, 151 pp.

[12] T. N. Ofei, Irawan S, W. Pao, “CFD method for predicting annular pressure losses and cuttings concentration in eccentric horizontal wells”, Journal of Petroleum Engineering, 2014, no. 4, 110–120 | DOI

[13] Ofei T.N., Alhemyari S.A., “Computational fluid dynamics simulation of the effect of drill pipe rotation on cuttings transport in horizontal wellbores using a Newtonian fluid”, International Field Exploration and Development Conference (IFEDC 2015), 2015, 1–8 | DOI

[14] T. N. Ofei, “Effect of yield power law fluid rheological properties on cuttings transport in eccentric horizontal narrow annulus”, J. of Fluids, 7:3 (2016), 116–124 | DOI

[15] Kamyab Mohammadreza, Vamegh Rasouli, “Experimental and numerical simulation of cut-tings transportation in coiled tubing drilling”, J. of Natural Gas Science and Engineering, 29 (2016), 284–302 | DOI

[16] Sayindla Sneha, Bjørnar Lund, Jan David Ytrehus, Arild Saasen, “Hole-cleaning performance comparison of oil-based and water-based drilling fluids”, J. of Petroleum Science and Engineering, 159 (2017), 49–57 | DOI

[17] Heydari Omid, Eghbal Sahraei, Pål Skalle, “Investigating the impact of drillpipe's rotation and eccentricity on cuttings transport phenomenon in various horizontal annuluses using computational fluid dynamics (CFD)”, Journal of Petroleum Science and Engineering, 156 (2017), 801–813 | DOI

[18] S. N. Kharlamov, V. Yu. Kim, S. I. Silvestrov, “Numerical modeling of a vortical investigation of heat transfer in fields of centrifugal mass forces in elements of the power equipment with a curvilinear wall”, 5th Proc. of the Intern. Forum on Strategic Technology, IFOST (University of Ulsan, 2010), University of Ulsan, Ulsan, South Korea, 2010, 105–109

[19] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[20] I. Epelle Emmanuel, Dimitrios I. Gerogiorgis, “Transient and steady state analysis of drill cuttings transport phenomena under turbulent conditions”, Chemical Engineering Research and Design, 131 (2018), 520–544 | DOI

[21] I. Epelle Emmanuel, Dimitrios I. Gerogiorgis, “CFD modelling and simulation of drill cuttings transport efficiency in annular bends: effect of particle sphericity”, J. of Petroleum Science and Engineering, 170 (2018), 992–1004 | DOI

[22] Syamlal Madhava, T.J.O'Brien, The derivation of a drag coefficient formula from velocity-voidage correlations, Technical Note, US Department of energy, Office of Fossil Energy, NETL, Morgantown, WV, 1987, 11 pp.

[23] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, Sand Diego, 1994, 467 pp. | MR | Zbl

[24] Akhshik Siamak, Majid Rajabi, “CFD-DEM modeling of cuttings transport in underbalanced drilling considering aerated mud effects and downhole conditions”, J. of Petroleum Science and Engineering, 160 (2018), 229–246 | DOI

[25] Ignatenko Y., Bocharov O., Gavrilov A., May R., “Steady-state cuttings transport simulation in horizontal borehole annulus”, 37th International Conference on Ocean, Offshore Mechanics and Arctic Engineering, Digital Collection, 2018, No 51296 (V008T11A051), American Society of Mechanical Engineers, 12 pp. http://www.asme.org/about-asme/terms-of-use | Zbl

[26] Pang Boxue, Shuyan Wang, Guodong Liu, Xiaoxue Jiang, Huilin Lu, Li. Zhenjie, “Numerical prediction of flow behavior of cuttings carried by Herschel-Bulkley fluids in hori-zontal well using kinetic theory of granular flow”, Powder Technology, 329 (2018), 386–398 | DOI

[27] Pang, Boxue, Shuyan Wang, Xiaoxue Jiang, Lu. Huilin, “Effect of orbital motion of drill pipe on the transport of non-Newtonian fluid-cuttings mixture in horizontal drilling annulus”, J. of Petroleum Sci. and Eng., 174 (2019), 201–215 | DOI

[28] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[29] G. H. Yeoh, J. Tu, Computational Techniques for Multi-Phase Flows, Elsevier Ltd, Inc, 2010, 210 pp.

[30] C. T. Crowe, “Review-numerical models for dulite gas-particle flows”, ASME Journal of Fluids Engineering, 104, Sept. (1982), 297–303 | DOI

[31] S. N. Kharlamov, N. S. Kudelin, P. O. Dedeyev, “Hydrodynamic, heat and acoustic processes modelling in transport of rheologically complex viscous media technology in pipelines”, XVIII Inter. Sci. Symp. in Honour of Academician M.A. Usov: PGON 2014 (Tomsk, Russia, 2014), IOP Conf. Series: Earth and Environmental Sci., 21, IOP Publ., 1–6 (In Eng.)

[32] S.N. Kharlamov, V.Yu.Kim, S.I. Silvestrov, R.A. Alginov, S.A. Pavlov, “Prospects of RANS models with effects multiparameter at modeling of complex non-isothermal flows of viscous media in devices with any configuration of surface”, Proc. of the 6th International Forum on Strategic Technology (Heilongjiang, Harbin, China, 2011), v. 2, 2011, 787–791 | DOI

[33] B. E. Launder, “On the computation of convective heat transfer in complex turbulent flows”, Journal of Heat Transfer, 110 (1988), 1112–1128 | DOI

[34] W. L. Chien, F. S. Lien, M. A. Leschziner, “Computational Modelling of Turbulent Flow in Turbomachine Passage with Low-Re Two-equation Models”, Computational Fluid Dynamics, 1994, 517–524

[35] A. M. Bubenchikov, S. N. Kharlamov, Matematicheskie modeli neodnorodnoy anizotropnoy turbulentnostivo vnutrennikh sistemakh, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 448 pp.

[36] H. Miloshevich, “Modelling of two-phased turbulent flows in jets with burning particles and phase transition in them”, Proc. of the 4th European CFD Conf., pt. 1 (Athens, Greece, 1998), v. 1, 175–179

[37] Di Giacinto, Sabetta, Piva, “Effekty dvustoronnego vzaimodeistviya v gazovych potokach s neplotnym mnozchestvom chastitch”, Teoreticheskie osnovy inzchenernich rastchetov, 104:3 (1982), 122–131

[38] S. A. Morsi, A. J. Alexander, “An Investigation of Particle Trajectories in Two-Phase Flow Systems”, Journal of Fluid Mechanics, 55:2 (1972), 193–208 | DOI | Zbl

[39] S. V. Patankar, D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, International Journal of the Heat and Mass Transfer, 15 (1972), 1787–1806 | DOI | Zbl

[40] J. Happel, H. Brenner, Low Reynolds number hydrodynamics with special applications to particular media, Prentige-Hall, New Jersey, 1965, 553 pp. | MR

[41] N. A. V. Piercy, M. S. Hooper, H. F. Winney, “Viscous flow through pipes with cores”, Journal of science, 15 (1933), 647–676 | Zbl

[42] R. I. Schischenko, B. I. Es'man, P. I. Kondratenko, Gigravlika promyvochnych zshidkostey, Nedra, M., 1976, 294 pp.

[43] G. Boyun, G. Liu, Applied drilling circulation systems: hydraulics, calculations and models, Gulf Professional Publishing, Burlington, 2011, 272 pp.

[44] Pressure drop in piping elements, Software-Factory Schmitz, Schifferstadt, Germany http://www.druckverlust.de/Online-Rechner

[45] D. Vahid, Y. Ma, Z. Li, T. Geng, M. Yu, “Effects of drill string eccentricity on frictional pres-sure losses in annuli”, Journal of Petroleum Science and Engineering, 187 (2020), 106853, 12 pp. | DOI

[46] E. V. Podryabinkin, V. Y. Rudyak, “Modeling of turbulent annular flows of Hershel-Bulkley fluids with eccentricity and inner cylinder rotation”, J. of Engineering Thermophysics, 23:2 (2014), 137–147 | DOI

[47] Hashemian Yahya, Mengjiao Yu, Stefan Miska, Siamack Shirazi, Ramadan Ahmed, “Accu-rate predictions of velocity profiles and frictional pressure losses in annular YPL-fluid flow”, J. of Canadian Petr. Tech., 53:6 (2014), 355–363 | DOI

[48] A. A. Schrayber, L. B. Gavin, V. A. Naumov, Turbulentnye techeniya gazovzvesi, Naukova dumka, Kiev, 1987, 240 pp.

[49] S. S. Costa, S. Stuckenbruck, S. A. Fontoura, A. L. Martins, “Simulation of transient cuttings transportation and ECD in wellbore drilling”, Europec/EAGE Conference and Exhibition, OnePetro, 2008, 11 pp. | DOI

[50] H. Grutzner, Beitrage zur theoretischen und experuncntellen Untersuchung der Turbulenz, Akademic-Verlag, Berlin, 1976, 135 pp.

[51] A. R. Barbin, J. B. Jones, “Turbulent flow in the inlet region of smooth pipe”, Trans. ASME, series D, 85:29 (1963), 69–80

[52] A. Busch, On particle transport and turbulence in wellbore flows of non-Newtonian fluids-Findings from acuttings transport process analysis by means of computational fluid dynamics, rheometry and dimensional analysis, PhD Dissertation, Norwegian Univ. of Science and Technology, 2020, 187 pp.

[53] S. N. Kharlamov, M. Janghorbani, “Procedury I instrumentarii vonitoringa protchessov I mechanizmov transporta schlama pri gidravlicheskoy otchistke gorizontal'nych skvazchin”, Izv. Tomskogo politekhn. Universiteta. Inzhiniring georesursov, 331:12 (2020), 22–40 | DOI

[54] S. N. Kharlamov, M. Janghorbani, “Protchessy transporta schlama pri otchistke skvazchin s proizvolnoy orientatchiey burovich trub, sodezchachich ekstchentritchno raspolozchennoe krugloe yadros podvizchnoy stenkoy: problemy, rezultaty, perspectivy (obzor)”, Izv. Tomskogo politekhn. Universiteta. Inzhiniring georesursov, 331:7 (2020), 131–149 | DOI

[55] S. N. Kharlamov, R. A. Alginov, “Engineering approaches' progress in calculation of inhomogeneous turbulence in pipelines”, SPE Russian Oil and Gas Technical Conference and Exhibition, v. 2, Society of Petroleum Engineers, M., 2010, 798–805

[56] Gavignet, A. Alain, Ian J. Sobey, “Model aids cuttings transport prediction”, Journal of Petroleum Technology, 41:9 (1989), 916–921 | DOI

[57] Nguyen, Desmond, S.S. Rahman, “A three-layer hydraulic program for effective cuttings transport and hole cleaning in highly deviated and horizontal wells”, SPE/IADC Asia Pacific Drilling Technology, Soc. of Petrol. Eng., 1996, 1–15 | DOI

[58] T. Esch, F. R. Menter, “Heat transfer predictions based on two-equation turbulence models with advanced wall treatment”, Turbulence, Heat and Mass Transfer, 2003, no. 4, 633–640

[59] D. Mehta, A. K. T. Radhakrishnan, J. B. van Lier, F. H. L. R. Clemens, “Assessment of numerical methods for estimating the wall shear stress in turbulent Herschel-Bulkley slurries in circular pipes”, J. of Hydraulic Research, 59:2 (2021), 196–213 | DOI

[60] S. N. Kharlamov, M. Janhorbani, “Optimizatchiya reologicheskich svoystv rastvora, intensifitchiruyushchich transport I otchistku gorizontal'nych skvazhin ot schlamov”, Izv. Tomskogo Politekhn. Universiteta. Inzhiniring georesursov, 333:8 (2022), 91–108 | DOI

[61] E. Oney, E. van Oort, “Modeling the effects of drill string eccentricity, pipe rotation and annular blockage on cuttings transport in deviated wells”, J. of Natural Gas Science and Engineering, 79:103221 (2020), 101–112 | DOI

[62] F. Hicham, A. Hadjadj, A. Haddad, T. N. Ofei, “Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows”, J. of Petroleum Exploration and Production Technology, 9:4 (2019), 3091–3101 | DOI