Comparative analysis of strategies in the model of confrontation between power and opposition
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Building on the model of information warfare between the authorities and the opposition, some typical political scenarios are considered. The first scenario is characterized by the party in the office having an advantage in the resource of propaganda broadcasting, but the opposition's propaganda messages being more viral. In the second scenario, the values of these parameters are equal. When analyzing each of the situations, three strategies for distributing a limited broadcast resource for each of the two parties are considered: increasing, decreasing and flat ones. For example, the increasing strategy is characterized by low intensity of broadcasting at the beginning of the confrontation and high intensity at the end. Comparison of each of the three strategies of the party in power with each of the strategies of the opposition allows to construct a matrix game in which the payoff is the difference in the numbers of supporters of the parties at the end of the confrontation. The solution of this game determines the most profitable strategy for a given political situation.
Keywords: mathematical modeling, information warfare, "Power-Society" system, differential equations, numerical experiment.
@article{MM_2022_34_11_a4,
     author = {A. P. Mikhailov and A. P. Petrov and O. G. Podlipskaia},
     title = {Comparative analysis of strategies in the model of confrontation between power and opposition},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a4/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
AU  - O. G. Podlipskaia
TI  - Comparative analysis of strategies in the model of confrontation between power and opposition
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 67
EP  - 76
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a4/
LA  - ru
ID  - MM_2022_34_11_a4
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%A O. G. Podlipskaia
%T Comparative analysis of strategies in the model of confrontation between power and opposition
%J Matematičeskoe modelirovanie
%D 2022
%P 67-76
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a4/
%G ru
%F MM_2022_34_11_a4
A. P. Mikhailov; A. P. Petrov; O. G. Podlipskaia. Comparative analysis of strategies in the model of confrontation between power and opposition. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 67-76. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a4/

[1] D. J. Daley, D. G. Kendall, “Stochastic rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR

[2] D. P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973 | MR

[3] R. Isea, R. Mayo-García, “Mathematical analysis of the spreading of a rumor among different subgroups of spreaders”, Pure and Applied Mathematics Letters, 2015 (2015), 50–54

[4] Liang'an Huo, Peiqing Huang, Chun-Xiang Guo, Analyzing the Dynamics of a Rumor Transmission Model with Incubation, Discrete Dynamics in Nature and Society, 2012, 2012, 21 pp. | MR | Zbl

[5] A. P. Mikhailov, N. A. Marevtseva, “Models of information struggle”, Math. Models Comput. Simul., 4:3 (2012), 251–259 | DOI | Zbl

[6] A. Petrov, O. Proncheva, “Modeling Propaganda Battle: Decision-Making, Homophily, and Echo Chambers”, Artificial Intelligence and Natural Language, AINL 2018, Communications in Computer and Information Science, 930, eds. Ustalov D., Filchenkov A., Pivovarova L., Žižka J., Springer, 2018, 197–209 | DOI

[7] A. Petrov, O. Proncheva, “Propaganda Battle with Two-Component Agenda”, Proceedings of the MACSPro Workshop 2019 (Vienna, Austria, March 21-23, 2019), CEUR Workshop Proceedings, 478, 2019, 28–38 http://ceur-ws.org/Vol-2478/ | DOI

[8] I. V. Kozitsin, “A general framework to link theory and empirics in opinion formation models”, Sci Rep, 12 (2022), 5543 | DOI

[9] I. V. Kozitsin, “Formal models of opinion formation and their application to real data: evidence from online social networks”, The Journal of Mathematical Sociology, 46:2 (2022), 120–147 | DOI | MR | Zbl

[10] A. G. Chkhartishvili, D. A. Gubanov, D. A. Novikov, Social Networks: Models of information influence, control and confrontation, Springer International Publishing, Cham, Switzerland, 2019 | DOI

[11] A. Chkhartishvili, D. Gubanov, I. Kozitsin, “Face Mask Perception during the COVID-19 Pandemic: an Observational Study of Russian Online Social Network VKontakte”, Advances in Systems Sci. and Applications, 21:3 (2021), 91–100 | DOI

[12] G. B. Pronchev, E. V. Shisharina, N. G. Proncheva, “Cyber threats for modern Russia in the context of the coronavirus pandemic”, Political Science Issues, 11:1(48–50) (2021), 26–34 | DOI

[13] G. B. Pronchev, A. P. Mikhailov, A. P. Lyubimov, A. A. Solovyev, “Particularities of the Internet-based virtual social environments within the context of information warfare”, EurAsian Journal of BioSciences, 14:2 (2020), 3731–3739

[14] L. Akhtyamova, M. Alexandrov, J. Cardiff, O. Koshulko, “Opinion Mining on Small and Noisy Samples of Health-related Texts”, Advances in Intelligent Systems and Computing III, AISC, 871, Springer, 2019, 1–12

[15] L. Akhtyamova, A. Ignatov, J. Cardiff, “A Large-scale CNN ensemble for medication safety analysis”, Applications of Natural Language to Inform. Systems, Proc. NLDB-2027, Springer, Cham, 2017, 247–253

[16] A. Boldyreva, O. Sobolevskiy, M. Alexandrov, V. Danilova, “Creating collections of de-scriptors of events and processes based on Internet queries”, 14-th Mexican Intern. Conf. on Artif. Intell., chapter 26, LNAI, 10061, Springer, Cham, 2016, 303–314 | DOI

[17] A. Boldyreva, M. Alexandrov, O. Koshulko, O. Sobolevskiy, “Queries to Internet as a tool for analysis of the regional police work and forecast of the crimes in regions”, 14-th Mexican Intern. Conf. on Artif. Intell., chapter 25, LNAI, 10061, Springer, Cham, 290–302

[18] S. Popova, G. Skitalinskaya, “Keyphrase Extraction Using Extended List of Stop Words with Automated Updating of Stop Words List”, Advances in Intelligent Systems and Computing II, CSIT 2017, Advances in Intelligent Systems and Computing, 689, Springer, Cham, 2018, 374–385 | DOI

[19] V. Danilova, S. Popova, M. Alexandrov, “Multilingual Protest Event Data Collection with GATE”, Proc. of 21-th Intern. Conf. on Natural Languages and Data Base, NLDB-2016, Lecture Notes in Computer Science, 9612, Springer, 2016, 115–126 | DOI

[20] V. Danilova, “A Pipeline for Multilingual Protest Event Selection and Annotation”, 2015 26th International Workshop on Database and Expert Systems Applications (DEXA) (Valencia, Spain, 2015), 309–313 | DOI

[21] A. P. Mikhailov, “Matematicheskoe modelirovanie vlasti v ierarkhicheskikh strukturakh”, Matematicheskoe modelirovanie, 6:6 (1994), 108–138 | Zbl

[22] A. P. Mikhailov, Modelirovanie sistemy «Vlast-Obshchestvo», Nauka, Fizmatlit, M., 2006, 250 pp.

[23] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, “Power-Information-Society Model”, Mathematica Montisnigri, 44, University of Montenegro, 2019, 73–83 http://www.montis.pmf.ac.me/vol44/6.pdf | DOI | MR

[24] A. Mikhailov, A. Petrov, G. Pronchev, O. Proncheva, “Increasing, Decreasing and Flat Strat-egies in Information Warfare”, Proc. of 22nd Conf. on Sci. Services Internet, 2020, 201–210 http://ceur-ws.org/Vol-2784/rpaper16.pdf | DOI