Numerical simulation of oxidative regeneration of a spherical catalyst grain
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 48-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to construction of a numerical algorithm for modeling the oxidative regeneration of a spherical catalyst grain The model is described by a nonlinear system of partial differential equations. The equations reflecting the dynamics of the components of the gas phase of the reaction are compiled based on the law of active masses conservation. They take into account the diffusion of components into the pores of the grain, the Stefan flow responsible for the movement of reaction products to the grain surface and the kinetic features of chemical reactions accompanying oxidative regeneration. The equation corresponding to the change in the temperature of the catalyst grain includes heat transfer and heating of the grain due to exothermic reactions. The remaining variables are used to account for changes in the qualitative and quantitative composition of coke deposits. The numerical algorithm based on the integro-interpolation method is constructed to study the model. The constructed model was became dimensionless from for reducing stiffness to conduct the computational experiment. The computational experiment was implemented taking into account the actual technological conditions of catalyst oxidative regeneration. The pictures of the distribution of concentrations and mass fractions of coke in the pores of the catalyst grain are presented in conclusion.
Keywords: oxidative regeneration, nonlinear model, chemical kinetics, stiff system, integro-interpolation method.
@article{MM_2022_34_11_a3,
     author = {I. M. Gubaydullin and E. E. Peskova and O. S. Yazovtseva and A. N. Zagoruiko},
     title = {Numerical simulation of oxidative regeneration of a spherical catalyst grain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a3/}
}
TY  - JOUR
AU  - I. M. Gubaydullin
AU  - E. E. Peskova
AU  - O. S. Yazovtseva
AU  - A. N. Zagoruiko
TI  - Numerical simulation of oxidative regeneration of a spherical catalyst grain
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 48
EP  - 66
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a3/
LA  - ru
ID  - MM_2022_34_11_a3
ER  - 
%0 Journal Article
%A I. M. Gubaydullin
%A E. E. Peskova
%A O. S. Yazovtseva
%A A. N. Zagoruiko
%T Numerical simulation of oxidative regeneration of a spherical catalyst grain
%J Matematičeskoe modelirovanie
%D 2022
%P 48-66
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a3/
%G ru
%F MM_2022_34_11_a3
I. M. Gubaydullin; E. E. Peskova; O. S. Yazovtseva; A. N. Zagoruiko. Numerical simulation of oxidative regeneration of a spherical catalyst grain. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 48-66. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a3/

[1] B. I. Kutepov, Kinetika obrazovaniia i vzaimoprevrashcheniia produktov okisleniia koksa na sovremennykh katalizatorakh krekinga, avtoreferat dissert. ... kand. tekh. nauk, Ufim. neft. in-t, Ufa, 1980

[2] R. M. Masagutov, B. F. Morozov, B. I. Kutepov, Regeneratsiia katalizatorov v neftepererabotke i neftekhimii, KHimiia, M., 1987, 144 pp.

[3] I. K. Zanin, E. D. Ivanchina, V. A. CHuzlov, “Optimizatsiia protsessa regeneratsii katalizatora gidroochistki dizelnoy fraktsii”, Neftepererabotka i neftekhimiia, 2015, no. 6, 13–18

[4] S. IU. Ivanov, I. K. Zanin, E. N. Ivashkina, “Modelirovanie protsessa regeneratsii Pt-katalizatorov riforminga benzinov i degidrirovaniia vysshikh parafinov”, Izvestiia Tomskogo politekhnicheskogo universiteta, 19:3 (2011), 96–99

[5] D. V. Budukva, O. V. Klimov, A. V. Pashigreva, O. V. Klimov, A. V. Pashigreva, A. L. Nuzhdin, V. I. Zaikovskii, Y. A. Chesalov, A. S. Noskov, “Deactivation and oxidative regeneration of last-generation catalysts for deep hydrofining of diesel fuel: Comparison of properties of fresh and deactivated IK-GO-1 catalysts”, Russian J. of Applied Chemistry, 83:12 (2010), 2144–2151 | DOI

[6] E. A. Karakhanov, S. V. Lysenko, T. Kannut, S. V. Baranova, A. N. Pushkin, A. A. Bratkov, “Oxidative Regeneration of Coked Cracking Catalysts Containing Heavy Metals and a Passivator”, Petroleum Chemistry, 38:1 (1998), 58–61

[7] S. Baranova, T. Kannut, E. Karakhanov, S. Lysenko, A. Pushkin, “Oxidative regeneration of catalysts coked during the cracking of different types of petroleum feedstock”, Petroleum Chemistry, 36:5 (1996), 406–409

[8] R. Richard, C. Julcour-Lebigue, M. H. Manero, “Regeneration of coked catalysts by an oxidation process using ozone”, 1st Trans Pyrenean Meeting in Catalysis (Toulouse, 2016), 86 pp.

[9] R. Richard, C. Julcour-Lebigue, M.-H. Manero, “A new oxidation process using ozone to regenerate coked catalysts”, International Ozone Association — Ozone and Advanced Oxidation for the Water-Energy-Food-Health NexusAt, 2016, 2, United Kingdom, Wales, Swansea

[10] I. M. Gubaydullin, Matematicheskoe modelirovanie dinamicheskikh rezhimov okislitelnoy regeneratsii katalizatorov v apparatakh s nepodvizhnym sloem, avtoreferat dissert. kand. fiz.-mat. nauk, Institut Neftekhimii i kataliza AN RB, Ufa, 1996

[11] I. M. Gubaydullin, “Ustoychivost zon vysokoy temperatury v nepodvizhnom sloe katalizatora”, Tez. dokl. II Vsesoiuz. konf. molodykh uchenykh po fizkhimii, NIITEkhim, M., 1983, 274 pp.

[12] E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow, Elsevier Ecience Publishing, 1987, 550 pp. | MR | Zbl

[13] O. Haralampous, G. Koltsakis, “Oxygen diffusion modeling in diesel particulate filter regeneration”, AIChE Journal, 50 (2004), 2008–2019 | DOI

[14] S. I. Reshetnikov, R. Petrov, S. Zazhigalov, A. N. Zagoruiko, “Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors”, Chemical Engineering Journal, 2020, no. 380 | Zbl

[15] S. Zazhigalov, N. Chumakova, A. Zagoruiko, “Modeling of the multidispersed adsorption-catalytic system for removing organic impurities from waste gases”, Chemical Engineering Science, 76 (2012), 81–89 | DOI

[16] C. Kern, A. Jess, “Regeneration of coked catalysts modelling and verification of coke burn-off in single particles and fixed bed reactors”, Chemical Eng. Sci., 60 (2005), 4249–4264 | DOI

[17] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag, 1996 | MR | Zbl

[18] A. B. Karpov, F. G. ZHagfarov, A. M. Kozlov, “Snizhenie koksootlozheniia v pechakh piroliza s pomoshchiu ingibitora koksoobrazovaniia”, Neftepererabotka i neftekhimiia. Nauchno-tekhnicheskie dostizheniia i peredovoy opyt, 2015, no. 11, 21–25

[19] G. I. Golodets, Geterogenno-kataliticheskie reaktsii s uchastiem molekuliarnogo kisloroda, Naukova dumka, Kiev, 1977, 359 pp.

[20] I. M. Gubaydullin, O. V. Dubinets, “Modelirovanie protsessa okislitelnoy regeneratsii s uchetom vliianiia parov vody”, Matematicheskoe modelirovanie, chislennye metody i kompleksy programm im. E.V. Voskresenskogo, IX Mezhdunarodnaia nauchnaia molodezhnaia shkola-seminar, SVMO, Saransk, 2020, 273 pp.

[21] A. L. Kohl, F. C. Riesenfeld, Gas purification, Gulf Publishing Co, Book Division, Houston, Texas, USA, 1985, 900 pp.

[22] C. M. Guldberg, P. Waage, “Studies Concerning Affinity”, Journal of Chemical Education, 63:12 (1986), 1044–1047 | DOI

[23] I. M. Gubaydullin, R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Simulation of propane pyrolysis in a flow-through chemical reactor under constant external heating”, Mathematical Models and Computer Simulations, 13:3 (2021), 437–444 | DOI | MR

[24] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems, Springer Series in Comput. Math., 14, 2nd edition, 1996 | DOI | MR | Zbl

[25] I. M. Gubaydullin, O. S. IAzovtseva, “Issledovanie usrednennoy modeli okislitelnoy regeneratsii zakoksovannogo katalizatora”, Komp. issled. i modelir, 13:1 (2021), 149–161 | MR

[26] V. V. Kuriatnikov, “Rol poverkhnostnykh svoystv dispergirovannogo uglia v protsessakh ego vosplameneniia”, Fizika goreniia i vzryva, 19:5 (1983), 18–21