Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents the results of studies of the kinetic and diffusion coefficients for the adsorption of surfactants on oil-bearing rocks in the nonlinear region of the isotherm. These parameters allow you to select an effective solution filtration mode, set the velocity of concentration points of the adsorption front, control the longitudinal-temporal distribution of surfactant concentrations on the solid and mobile phases of the reservoir depending on the initial concentration and the flow rate of the solution. The paper presents a numerical method for determining the parameters of the equations of a mathematical model of the adsorption of surfactants — sulfanol from an aqueous solution in oil sand using experimental data. It takes into account that the kinetics coefficient and the effective diffusion coefficient in a porous medium depend on the concentration of the target component. Using experimental data and the developed methodology, empirical equations for the kinetics coefficient and the effective diffusion coefficient of the process are determined. It is determined that these coefficients vary within very large limits. As a result of the research, we came to the conclusion that the developed numerical methods for determining the parameters of the equations of mathematical models of the adsorption of surfactants on oil and quartz sands provide the adequacy of the calculated data of the adsorbate and the adsorptive experiment. The maximum average deviation does not exceed 8%.
Mots-clés : adsorption, surfactants, effective diffusion coefficient.
Keywords: porous media, soap naphtha, mathematical model, kinetic coefficient
@article{MM_2022_34_11_a2,
     author = {G. S. Aliyev and Kh. M. Rustamli and Kh. Sh. Hajiahmedzade},
     title = {Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a2/}
}
TY  - JOUR
AU  - G. S. Aliyev
AU  - Kh. M. Rustamli
AU  - Kh. Sh. Hajiahmedzade
TI  - Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 35
EP  - 47
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a2/
LA  - ru
ID  - MM_2022_34_11_a2
ER  - 
%0 Journal Article
%A G. S. Aliyev
%A Kh. M. Rustamli
%A Kh. Sh. Hajiahmedzade
%T Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks
%J Matematičeskoe modelirovanie
%D 2022
%P 35-47
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a2/
%G ru
%F MM_2022_34_11_a2
G. S. Aliyev; Kh. M. Rustamli; Kh. Sh. Hajiahmedzade. Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 35-47. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a2/

[1] N. A. Petrov, V. G. Sultanov, V. G. Konesev, I. N. Davydova, Povysheniye kachestva pervichnogo i vtorichnogo vskrytiya neftyanykh plastov, Nedra, SPb., 2007, 544 pp.

[2] S. R. Derkach, G. I. Berestova, T. A. Motyleva, “Ispolzovaniye PAV dlya intensifikatsii neftedobychi pri pervichnom i vtorichnom vskrytii plastov”, Vestnik MGTU, 13:4/1 (2010), 784–792

[3] D. N. Musina, B. R. Vagapov, O. Yu. Sladovskaya, D. A. Ibragimova, I. A. Ivanova, “Sovremennyye tekhnologii nefteotdachi plastov na osnove poverkhnostno-aktivnykh vybrosov”, Vestnik tekhnologicheskoqo universiteta, 19:12 (2016), 63–67

[4] G. P. Jeppu, T. P. Clement, “A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects”, J. of Contaminant Hydrology, 129-130 (2012), 46–53 | DOI

[5] Bu-Yao Zhu, Gu. Tiren, “General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 1. Theoretical”, J. of the Chemical Society, Faraday Transactions 1, 85 (1989), 3813–3817 | DOI

[6] R. Duro, C. Souto, J. L. Gómez-Amoza, R. Martínez-Pacheco, A. Concheiro, “Interfacial Adsorption of Polymers and Surfactants: Implications for the Properties of Disperse Systems of Pharmaceutical Interest”, J. Drug Development and Industrial Pharmacy, 25 (1999), 817–829 | DOI

[7] M. L. Surguchev, Vtorichnye i tretichnye metody uvelicheniia nefteotdachi plastov, Nedra, M., 1985, 308 pp.

[8] Letian Zhou, Saikat Das, Brian R. Ellis, “Effect of Surfactant Adsorption on the Wetta-bility Alteration of Gas-Bearing Shales”, Environmental Engineering Science, 33:10 (2016), 767–777

[9] Iu. P. Zheltov, Razrabotka neftianykh mestorozhdenii, Nedra, M., 1998, 365 pp.

[10] N. M. Sherstnev, L. M. Gurvich, I. G. Bulina i dr., Primenenie kompozitsii PAV pri ekspluatatsii skvazhin, Nedra, M., 1988, 184 pp.

[11] I. N. Diiarov, N. Iu. Bashkirtseva, “Kompozitsionnye neionogennye PAV dlia kompleksnoi intensifikatsii protsessov dobychi, podgotovki i transportirovki vysokoviazkikh neftei”, Vestnik Kazanskogo tekhnologich. universiteta, 2010, no. 4, 141–157

[12] Iu. V. Savinykh, D. I. Chuikina, “Izmenenie sostava vysokoviazkoi nefti pri kontakte s PAV”, Oil Gas Journal Russia, 2017, no. 3, 84–87

[13] E. A. Flyurik, M. V. Kokhanskaya, N. V. Bushkevich, “Izucheniye svoystv sistemy “voda-anionnyy PAV–nastoyka plodov golubiki””, Vestnik MGTU im. N.E. Baumana. Seriya «Yestestvennyye nauki», 2019, no. 6 (87) | DOI

[14] M. Rudman, H. M. Blackburn, “Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method”, Applied Math. Modelling, 30 (2006), 1229–1248 | DOI | Zbl

[15] G. S. Aliyev, R. N. Najiyeva, “Calculation method for variable kinetic and diffusion equation coefficients for adsorption of sulfonol in the nonlinear isotherm region”, Azerbaijan Chemical Journal, 2019, no. 3, 57–61 | DOI

[16] A. A. Samarsky, P. N. Vabishchevich, Chislennyye metody resheniya obratnykh zadach matematicheskoy fiziki, Uchebnoye posobiye, Izd. 3-e, Izd-vo LKI, M., 2009, 480 pp.

[17] E. M. Koltsova, A. S. Skichko, A. V. Zhensa, Chislennye metody reshenii uravnenii matematicheskoi fiziki i khimii, Iurait, M., 2020, 220 pp.

[18] P. N. Vabishchevich, “Computational identification of the time dependence of the right side of a hyperbolic equation”, J. of Computational Mathematics and Mathematical Physics, 59:9 (2019), 1537–1545

[19] P. N. Korniushin, Chislennye metody, Izd-vo Dalnevostochnogo universiteta, Vladivostok, 2002, 104 pp.

[20] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Laboratoriia bazovykh znanii, M., 2002, 632 pp. | MR