Models relating interregional migration and friendship in Russia
Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 19-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Public profiles of social network users can be a source of demographic and sociological information, in particular providing data on the intensity of interregional interaction («region friendship»). Previously user profiles from the VK social network were indexed and processed to form a geotagged database, published within the webcensus.ru project. The present article uses this data to discover relationships between intensities of interregional migration and friendship for municipal districts and regions of Russia. We investigate four models for estimating the amount of friend links between regions using data on the number of migrants between those regions. We show that the model that takes into account the entire system of interregional migration flows is better at predicting the number of friendship links than models which only consider every pair of interacting regions separately from the others.
Keywords: social network, region interaction, graph model.
Mots-clés : migration
@article{MM_2022_34_11_a1,
     author = {A. Yu. Fedina and A. D. Yashunsky},
     title = {Models relating interregional migration and friendship in {Russia}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_11_a1/}
}
TY  - JOUR
AU  - A. Yu. Fedina
AU  - A. D. Yashunsky
TI  - Models relating interregional migration and friendship in Russia
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 19
EP  - 34
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_11_a1/
LA  - ru
ID  - MM_2022_34_11_a1
ER  - 
%0 Journal Article
%A A. Yu. Fedina
%A A. D. Yashunsky
%T Models relating interregional migration and friendship in Russia
%J Matematičeskoe modelirovanie
%D 2022
%P 19-34
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_11_a1/
%G ru
%F MM_2022_34_11_a1
A. Yu. Fedina; A. D. Yashunsky. Models relating interregional migration and friendship in Russia. Matematičeskoe modelirovanie, Tome 34 (2022) no. 11, pp. 19-34. http://geodesic.mathdoc.fr/item/MM_2022_34_11_a1/

[1] N. Yu. Zamyatina, A. D. Yashunsky, “Virtualnaia geografiia virtualnogo naseleniia”, Monit. obshch. mneniia: Ekon. sots. peremeny, 2018, no. 1 (143), 117–137 | DOI

[2] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee, “Measurement and analysis of online social networks”, Proc. 7th ACM SIGCOMM conf. on Internet measurement, IMC '07, ACM, New York, NY, USA, 2007, 29–42 | DOI

[3] C. Llano, T. de la Mata, “Modeling the Effect of Social-Network on Interregional Trade of Services: How Sensitive Are the Results to Alternative Measures of Social Linkages”, Spatial Econometric Interaction Modelling, Advances in Spatial Science, eds. R. Patuelli, G. Arbia, Springer, Cham, 2016 | DOI | MR

[4] Z. Li, X. Huang, X. Ye et al, “Measuring global multi-scale place connectivity using geotagged social media data”, Sci. Rep., 14694:11 (2021) | DOI

[5] Napravlenie migratsi, Interaktivni atlas “Virtualnoe naselenie Rossii”, 2017 (date of the application: 20.05.2022)

[6] Druzhit gorodami, Interaktivnyi atlas “Virtualnoe naselenie Rossii”, 2017 (date of the application: 20.05.2022)

[7] Dolia polzovatelei ot naseleniia, Interaktivnyi atlas “Virtualnoe naselenie Rossii”, 2017 (date of the application: 20.05.2022)

[8] O. D. Ivlieva, A. D. Yashunsky, “O rasstoianiiah, kotorykh ne znaet druzhba”, Gorodskie issled. i prakt., 4:1 (2019), 64–76 | DOI

[9] A. D. Yashunsky, “O sotsialnoi pronitsaemosti granits munitsipalnykh obrazovanii”, Regionalnye issledovaniia, 2021, no. 1, 34–45 | MR