Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_10_a6, author = {O. V. Nikolaeva}, title = {Statistical technique in clustaring problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {110--122}, publisher = {mathdoc}, volume = {34}, number = {10}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a6/} }
O. V. Nikolaeva. Statistical technique in clustaring problems. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 110-122. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a6/
[1] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, “Scalable K-means++”, Proc. of the VLDB Endowment, 5:7 (2012), 622–633 | DOI
[2] S. V. Belim, P. E. Kutlunin, “Vydelenie konturov na izobrazheniiakh s pomoshchiu algoritma klasterizatsii”, Komputernaia Optika, 39:1 (2015), 119–125 | DOI
[3] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, “Automatic subspace clustering of high dimensional data for data mining applications”, Proc. ACM SIGMOD International Conference on Management Data, ACM Press, Seattle, Washington, USA, 1998, 94–105 | DOI
[4] H. Nagesh, S. Goi, A. Choudhary, “Adaptive grids for clustering massive data sets”, Proc. of 1st SIAM International Conference on Data Mining (Chicago, USA, 2001), 1–17 | MR | Zbl
[5] N. P. Lin, C. I. Chang, N.Y Jan, H. J. Chen, W. H. Hao, “A deflected grid-based algorithm for clustering analysis”, Int. J. of Math. Models Methods in Applied Sci., 1:1 (2007), 33–39
[6] I. A. Pestunov, V. B. Berikov, Yu. N. Sinyavsliy, “Segmentatziia mnogospektralnykh izobrazhenii na osnove ansamblia neparametricheskikh algoritmov klasterizatsii”, Vestnik Sib. Gosud. aerokosmucheskogo univ. im. akad. M.F. Reshetneva, 2010, no. 5, 56–64
[7] N. P. Lavernov, V. V. Popovich, L. A. Vedeshin, F. R. Galiano, “Metody analiza dannykh distantsionnogo zondirovaniia Zemli”, Sovr. problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 12:6 (2015), 145–153
[8] L. M. Bruce, C. H. Koger, J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction”, IEEE Transactions on Geoscience and Remote Sensing, 40:10 (2002), 2331–2338 | DOI
[9] G. Sheikholeslami, S. Chatterjee, A. Zhang, “WaveCluster: A multi-resolution clustering approach for very large spatial databases”, Proc. of the 24th VLDB Conf. (NY, USA, 1998), 428–439
[10] F. Wang, Ch. H. Q. Ding, T. Li, “Integrated KL (K-means Laplacian) Clustering: A new clustering approach by combining attribute data and pairwise relations”, Proc. of SIAM Inter. Conf. on Data Mining (Sparks, Nevada, USA, 2009), 38–38 | DOI
[11] A. A. Varlamova, A. Yu. Denisova, V. V. Sergeyev, “Informatsionnaia tekhnologia obrabotki dannykh DZZ dlia otsenki arealov rastenii”, Komputernaia Optika, 42:5 (2015), 864–876 | DOI
[12] M. A. Kashnitskaya, “Issledovanie dinamiki ploshchadei vodnoi poverkhnosti ozer stepnoi zony Vostochnogo Zabaikalia na osnove dannykh distantsionnogo zondirovaniia Zemli”, Sovr. problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 18:3 (2021), 242–253 | DOI
[13] Y. Tarabalka, J. Chanussot, J. A. Benediktsson, “Segmentation and classification of hyperspectral images using watershed transformation”, Pattern Recognition, 43 (2010), 2367–2379 | DOI | Zbl
[14] E. V. Myasnikov, “Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches”, Computer Optics, 41:4 (2017), 564–572 | DOI
[15] Yu. N. Orlov, S. L. Fedorov, Metody chislennogo modelirovaniia protsessov nestatsionarnogo sluchainogo bluzhdaniia, MFTI, M., 2016, 108 pp.
[16] G. G. Baula, M. N. Brychikhin, M. I. Istomina, A. Yu. Krotkov, E. Yu. Szhyonov, A. A. Rizvanov, V. N. Tret'yakov, “Formirovanie bazy dannykh giperspectralnykh opticheskikh kharakteristik selskokhoziaistvennykh kultur v ultrafioletovoi, vidimoi i blizhnei infrakrasnoi oblastiakh spektra”, Kosmonavtika i raketostroenie, 2013, no. 4, 178–184