Numerical simulation of the distribution of vehicle emissions in a street canyon
Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of mathematical modeling of non-isothermal turbulent air flow and admixture transport in an idealized street canyon are presented. The simulation was based on the RANS model developed by the authors, the numerical algorithm, and the application package, which were improved to take into account the effect of the buoyancy force on aerodynamics and admixture transport. The mathematical model includes Reynolds-averaged stationary three-dimensional Navier-Stokes equations, equations of heat transfer and impurity transfer. For closing, a k-eps turbulence model was chosen taking into account the buoyancy forces. The numerical algorithm uses the finite volume method, non-uniform structured grids, and the fictitious domain method. Approximation of the differential problem is performed using Van Leer's monotonized linear upwind scheme and piecewise linear interpolation for dependent quantities. The resulting grid equations were solved sequentially by the iterative method of Buleev N. I. The SIMPLE algorithm was used to match the velocity and pressure fields. Using the developed package of applied programs, it was found that the least ventilated at low wind velocity ($\sim$ 1 m/s) are narrow and high street canyons, and the higher the street canyon with a constant width, the higher the average concentration in the breathing zone. When studying the influence of the degree of heating of the surfaces of a street canyon, the height and width of which coincide, the least ventilated case is when the surface temperature of the windward vertical side of the canyon is 15–20$^\circ$ С higher than the ambient temperature. The main reason for this is the formation of a secondary vortex above the road surface, due to which the admixture is poorly carried out of the canyon.
Keywords: RANS model, mixed convection, street canyon, finite volume method, influence of sizes and degree of surface heating, secondary vortices.
@article{MM_2022_34_10_a4,
     author = {A. V. Starchenko and E. A. Danilkin and D. V. Leschinsky},
     title = {Numerical simulation of the distribution of vehicle emissions in a street canyon},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {34},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a4/}
}
TY  - JOUR
AU  - A. V. Starchenko
AU  - E. A. Danilkin
AU  - D. V. Leschinsky
TI  - Numerical simulation of the distribution of vehicle emissions in a street canyon
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 81
EP  - 94
VL  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a4/
LA  - ru
ID  - MM_2022_34_10_a4
ER  - 
%0 Journal Article
%A A. V. Starchenko
%A E. A. Danilkin
%A D. V. Leschinsky
%T Numerical simulation of the distribution of vehicle emissions in a street canyon
%J Matematičeskoe modelirovanie
%D 2022
%P 81-94
%V 34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a4/
%G ru
%F MM_2022_34_10_a4
A. V. Starchenko; E. A. Danilkin; D. V. Leschinsky. Numerical simulation of the distribution of vehicle emissions in a street canyon. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a4/

[1] A. A. Sitdikova, N. V. Svyatova, I. V. Tsareva, “Analiz vliianiia vybrosov avtotransporta v krupnom promyshlennom gorode na sostoianie zagriazneniia atmosfernogo vozdukha”, Sovremennye problemy nauki i obrazovaniia, 2015, no. 3, 591

[2] A. V. Starchenko, R. B. Nuterman, E. A. Danilkin, Chislennoe modelirovanie turbulentnykx techenii i perenosa primesi v ulichnykh kanonakh, Izd-vo Tomskogo Gosudarstvennogo Universiteta, Tomsk, 2015, 252 pp.

[3] Y. Dai, C. M. Mak, Y. Zhang, D. Cui, J. Hang, “Investigation of interunit dispersion in 2D street canyons: A scaled outdoor experiment”, Building Env., 171 (2020), 106673 | DOI

[4] A. A. Balogun, A. S. Tomlin, C. R. Wood, J. F. Barlow, S. E. Belcher, R. J. Smalley, J. J.N. Lingard, S. J. Arnold, A. Dobre, A. G. Robins, “In-Street Wind Direction Variability in the Vi-cinity of a Busy Intersection in Central London”, Boundary-Layer Meteorology, 136:3 (2010), 489–513 | DOI

[5] L. Chen, J. Hang, G. Chen, S. Liu, Y. Lin, M. Mattsson, M. Sandberg, H. Ling, “Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating”, Building and Environment, 189 (2021), 107510 | DOI

[6] G. Lobaccaro, J. A. Acero, G. S. Martinez, A. Padro, T. Laburu, G. Fernandez, “Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons”, International Journal of Environmental Research and Public Health, 16 (2019), 3574 | DOI

[7] Y. Huang, C. Lei, C. H. Liu, P. Perez, H. Forehead, S. Kong, J. L. Zhou, “A review of strategies for mitigating roadside air pollution in urban street canyons”, Environmental Pollution, 280 (2021), 116971 | DOI | MR

[8] J. J. Kim, E. Pardyjak, D. Y. Kim, K. S. Han, B. H. Kwon, “Effects of building-roof cooling on flow and air temperature in urban street canyons”, Asia-Pacific Journal of Atmospheric Sciences, 50:3 (2014), 365–375 | DOI

[9] H. Yang, C. Kwong, C. Lam, Y. Lin, L. Chen, M. Mattsson, M. Sandberg, A. Hayati, L. Claesson, J. Hang, “Numerical investigations of Re-independence and influence of wall heating on flow characteristics and ventilation in full-scale 2D street canyons”, Building and Environment, 189 (2021), 107510 | DOI

[10] L. W. Chewa, L. R. Glicksmana, L. K. Norford, “Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales”, Build. Env., 146 (2018), 77–87 | DOI

[11] L. G. Loitsyansky, Mekhanika zhidkosti i gaza, Nauka, M., 2003

[12] R. A. W. M. Henkes, F. F. Van Der Flugt, C. J. Hoogendoorn, “Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models”, Int. J. Heat Mass Transfer, 34 (1991), 1543–1557 | DOI

[13] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computational Methods in Applied Mechanics and Engineering, 3:2 (1974), 269–289 | DOI | Zbl

[14] B. Van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, J. of Comp. Phys., 14 (1974), 361–370 | DOI | MR | Zbl

[15] E. A. Danilkin, A. V. Starchenko, “Modeling the spread of automobile emissions in a street canyon”, Computational technologies, 25:2 (2020), 4–21

[16] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ. Corporation, New York, 1980, 214 pp. | Zbl

[17] V. P. Ilyin, Metody nepolnoi faktorizatsii dlia resheniia algebraicheskikh system, Fizmatlit, M., 1995, 288 pp. | MR

[18] A. Walton, “Large-eddy simulation of pollution dispersion in an urban street canyon. Part 2: idealised canyon imulation”, Atmospheric Environment, 36 (2002), 3615–3627 | DOI