Non-equilibrium characteristics of heat transfer of copper in a wide temperature range
Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The characteristics of nonequilibrium heat transfer of copper, such as thermal conductivity and heat capacity, are obtained in a wide temperature range ($300 \leqslant T \leqslant 5700$ K), including the region of melting-crystallization phase transformations by mathematical modeling. As is known, there are two mechanisms of heat transfer in a solid body: by elastic vibrations of the lattice and by free electrons. When determining these characteristics of copper heat transfer, the lattice and electronic components were taken into account. Modeling of the characteristics of heat transfer of the copper electronic subsystem in this work is based on the use of quantum statistics of the electron gas using the Fermi-Dirac integrals. The properties of the phonon subsystem were determined within the framework of the atomistic approach. The interaction potential of particles of the “embedded atom” family EAM was used for modeling. The simulation results were compared with the results of alternative calculations. The total heat capacity and thermal conductivity of copper, obtained by summing the electronic and phonon components, are compared with the experimental data.
Keywords: nonequilibrium copper heat transfer, electron gas quantum statistics, molecular dynamics modeling.
Mots-clés : FermiDirac integrals
@article{MM_2022_34_10_a3,
     author = {V. I. Mazhukin and O. N. Koroleva and M. M. Demin and A. A. Aleksashkina},
     title = {Non-equilibrium characteristics of heat transfer of copper in a wide temperature range},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {34},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - O. N. Koroleva
AU  - M. M. Demin
AU  - A. A. Aleksashkina
TI  - Non-equilibrium characteristics of heat transfer of copper in a wide temperature range
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 65
EP  - 80
VL  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/
LA  - ru
ID  - MM_2022_34_10_a3
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A O. N. Koroleva
%A M. M. Demin
%A A. A. Aleksashkina
%T Non-equilibrium characteristics of heat transfer of copper in a wide temperature range
%J Matematičeskoe modelirovanie
%D 2022
%P 65-80
%V 34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/
%G ru
%F MM_2022_34_10_a3
V. I. Mazhukin; O. N. Koroleva; M. M. Demin; A. A. Aleksashkina. Non-equilibrium characteristics of heat transfer of copper in a wide temperature range. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/

[1] A. V. Mazhukin, V. I. Mazhukin, M. M. Demin, “Modeling of femtosecond laser ablation of Al film by laser pulses”, Applied Surface Science, 257 (2011), 5443–5446 | DOI

[2] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O. Quinn, “Thin Film Thermoelectric Devices with High Room Temperature Figures of Merit”, Nature, 413 (2001), 597–602 | DOI

[3] Eu. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications, New York, 2011

[4] Eu. G. Gamaly, Femtosecond Laser-Matter Interactions: Solid-Plasma-Solid Transformations at the Extreme Energy Density, Jenny Stanford Publishing Pte. Ltd., Singapore, 2022

[5] G. M. Petrov, A. Davidson, D. F. Gordon, J. Pe-ano, “Modeling of short-pulse laser-metal interactions in the warm dense matter regime using the two-temperature model”, Phys. Rev. E, 103:3 (2021), 033204, 11 pp. | DOI | MR

[6] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, A. V. Mazhukin, “Role of electron pressure in the problem of femtosecond laser action on metals”, Appl. Surf. Sci., 530 (2020), 147227 | DOI

[7] I. M. Lifshic, M. I. Kaganov, L. V. Tanatarov, “Relaksacija mezhdu elektronami i kristallicheskojj reshetkojj”, ZhEhTF, 31:2 (8) (1956), 232–237

[8] V. I. Mazhukin, “Kinetics and dynamics of phase transformations in metals under action of ultra-short high-power laser pulses”, Laser Pulses Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 219–276

[9] A. V. Mazhukin, O. N. Koroleva, V. I. Mazhukin, A. V. Shapranov, “Continual and molecular dynamics approaches in determining thermal properties of silicon”, Proc. SPIE, 10453, 2017, 104530Y, 9 pp.

[10] P. A. Loboda, N. A. Smirnov, A. A. Shadrin, N. G. Karlykhanov, “Simulation of absorption of femtosecond laser pulses in solid-density copper”, High Energy Density Phys, 7:4 (2011), 361–370 | DOI

[11] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Determination of Thermal Properties of Gold in the Region of Melting-Crystallization Phase Transition: Molecular Dynamics Approach”, Math. Models Comput. Simul., 14:4 (2022), 662–676 | DOI

[12] V. I. Mazhukin, M. M. Demin, A. A. Aleksashkina, “Atomistic modeling of thermophysical properties of copper in the region of the melting point”, Math. Montis, 41 (2018), 99–111 | Zbl

[13] D. P. Sellan, E. S. Landry, J. E. Turney, A. J.H. McGaughey, C. H. Amon, “Size effects in mo-lecular dynamics thermal conductivity predictions”, Phys. Rev. B, 81 (2010), 214305 | DOI

[14] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations”, Phys. Rev. B, 63 (2001), 224106 | DOI

[15] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976

[16] Yu. V. Martynenko, Yu. N. Iavlinskii, “Cooling of electron gas of a metal at high temperatures”, Docl. AN SSSR, 270:1 (1983), 88–91

[17] D. V. Sivuhin, Obshchii kurs fiziki, Uchebnoe posobie, v. 2, Termodinamika i molekuliarnaia fizika, Fizmatlit, Izd-vo MFTI, M., 2005

[18] I.S. Grigoriev, E.Z. Melihov (eds.), Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991

[19] Z. Tong, S. Li, X. Ruan, H. Bao, “Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals”, Phys. Rev. B, 100 (2019), 144306 | DOI

[20] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[21] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI

[22] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl

[23] L. Hu, W. J. Evans, P. Keblinski, “One-dimensional phonon effects in direct molecular dynamics method for thermal conductivity determination”, J. Appl. Phys., 110 (2011), 113511 | DOI

[24] O. N. Koroleva, M. M. Demin, A. V. Mazhukin, V. I. Mazhukin, “Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range”, JPCS, 1787 (2021), 012026 | DOI

[25] A. A. Aleksashkina, M. M. Demin, V. I. Mazhukin, “Molecular dynamic calculation of lattice thermal conductivity of gold in the melting-crystallization region”, Math. Montis, 46 (2019), 106–122 | DOI | MR

[26] A. A. Samarskii, A. I. Gulin, Chislennye metody, Nauka, M., 1992

[27] Yan Wang, Zexi Lu, Xiulin Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering”, J. Appl. Phys., 119 (2016), 225109, 10 pp. | DOI | MR

[28] M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud (eds.), JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, 14, Suppl. 1, Third Edition, 1985

[29] V. E. Zinoviev, Teplofizicheskie svoistva metallov pri vysokikh temperaturakh, Metallurgiia, M., 1989