Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_10_a3, author = {V. I. Mazhukin and O. N. Koroleva and M. M. Demin and A. A. Aleksashkina}, title = {Non-equilibrium characteristics of heat transfer of copper in a wide temperature range}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--80}, publisher = {mathdoc}, volume = {34}, number = {10}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/} }
TY - JOUR AU - V. I. Mazhukin AU - O. N. Koroleva AU - M. M. Demin AU - A. A. Aleksashkina TI - Non-equilibrium characteristics of heat transfer of copper in a wide temperature range JO - Matematičeskoe modelirovanie PY - 2022 SP - 65 EP - 80 VL - 34 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/ LA - ru ID - MM_2022_34_10_a3 ER -
%0 Journal Article %A V. I. Mazhukin %A O. N. Koroleva %A M. M. Demin %A A. A. Aleksashkina %T Non-equilibrium characteristics of heat transfer of copper in a wide temperature range %J Matematičeskoe modelirovanie %D 2022 %P 65-80 %V 34 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/ %G ru %F MM_2022_34_10_a3
V. I. Mazhukin; O. N. Koroleva; M. M. Demin; A. A. Aleksashkina. Non-equilibrium characteristics of heat transfer of copper in a wide temperature range. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a3/
[1] A. V. Mazhukin, V. I. Mazhukin, M. M. Demin, “Modeling of femtosecond laser ablation of Al film by laser pulses”, Applied Surface Science, 257 (2011), 5443–5446 | DOI
[2] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O. Quinn, “Thin Film Thermoelectric Devices with High Room Temperature Figures of Merit”, Nature, 413 (2001), 597–602 | DOI
[3] Eu. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications, New York, 2011
[4] Eu. G. Gamaly, Femtosecond Laser-Matter Interactions: Solid-Plasma-Solid Transformations at the Extreme Energy Density, Jenny Stanford Publishing Pte. Ltd., Singapore, 2022
[5] G. M. Petrov, A. Davidson, D. F. Gordon, J. Pe-ano, “Modeling of short-pulse laser-metal interactions in the warm dense matter regime using the two-temperature model”, Phys. Rev. E, 103:3 (2021), 033204, 11 pp. | DOI | MR
[6] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, A. V. Mazhukin, “Role of electron pressure in the problem of femtosecond laser action on metals”, Appl. Surf. Sci., 530 (2020), 147227 | DOI
[7] I. M. Lifshic, M. I. Kaganov, L. V. Tanatarov, “Relaksacija mezhdu elektronami i kristallicheskojj reshetkojj”, ZhEhTF, 31:2 (8) (1956), 232–237
[8] V. I. Mazhukin, “Kinetics and dynamics of phase transformations in metals under action of ultra-short high-power laser pulses”, Laser Pulses Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 219–276
[9] A. V. Mazhukin, O. N. Koroleva, V. I. Mazhukin, A. V. Shapranov, “Continual and molecular dynamics approaches in determining thermal properties of silicon”, Proc. SPIE, 10453, 2017, 104530Y, 9 pp.
[10] P. A. Loboda, N. A. Smirnov, A. A. Shadrin, N. G. Karlykhanov, “Simulation of absorption of femtosecond laser pulses in solid-density copper”, High Energy Density Phys, 7:4 (2011), 361–370 | DOI
[11] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Determination of Thermal Properties of Gold in the Region of Melting-Crystallization Phase Transition: Molecular Dynamics Approach”, Math. Models Comput. Simul., 14:4 (2022), 662–676 | DOI
[12] V. I. Mazhukin, M. M. Demin, A. A. Aleksashkina, “Atomistic modeling of thermophysical properties of copper in the region of the melting point”, Math. Montis, 41 (2018), 99–111 | Zbl
[13] D. P. Sellan, E. S. Landry, J. E. Turney, A. J.H. McGaughey, C. H. Amon, “Size effects in mo-lecular dynamics thermal conductivity predictions”, Phys. Rev. B, 81 (2010), 214305 | DOI
[14] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations”, Phys. Rev. B, 63 (2001), 224106 | DOI
[15] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
[16] Yu. V. Martynenko, Yu. N. Iavlinskii, “Cooling of electron gas of a metal at high temperatures”, Docl. AN SSSR, 270:1 (1983), 88–91
[17] D. V. Sivuhin, Obshchii kurs fiziki, Uchebnoe posobie, v. 2, Termodinamika i molekuliarnaia fizika, Fizmatlit, Izd-vo MFTI, M., 2005
[18] I.S. Grigoriev, E.Z. Melihov (eds.), Fizicheskie velichiny, Spravochnik, Energoatomizdat, M., 1991
[19] Z. Tong, S. Li, X. Ruan, H. Bao, “Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals”, Phys. Rev. B, 100 (2019), 144306 | DOI
[20] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[21] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[22] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117:1 (1995), 1–19 | DOI | Zbl
[23] L. Hu, W. J. Evans, P. Keblinski, “One-dimensional phonon effects in direct molecular dynamics method for thermal conductivity determination”, J. Appl. Phys., 110 (2011), 113511 | DOI
[24] O. N. Koroleva, M. M. Demin, A. V. Mazhukin, V. I. Mazhukin, “Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range”, JPCS, 1787 (2021), 012026 | DOI
[25] A. A. Aleksashkina, M. M. Demin, V. I. Mazhukin, “Molecular dynamic calculation of lattice thermal conductivity of gold in the melting-crystallization region”, Math. Montis, 46 (2019), 106–122 | DOI | MR
[26] A. A. Samarskii, A. I. Gulin, Chislennye metody, Nauka, M., 1992
[27] Yan Wang, Zexi Lu, Xiulin Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering”, J. Appl. Phys., 119 (2016), 225109, 10 pp. | DOI | MR
[28] M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud (eds.), JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, 14, Suppl. 1, Third Edition, 1985
[29] V. E. Zinoviev, Teplofizicheskie svoistva metallov pri vysokikh temperaturakh, Metallurgiia, M., 1989