Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_10_a2, author = {O. A. Kovyrkina and A. A. Kurganov and V. V. Ostapenko}, title = {Comparative analysis of the accuracy of three different schemes in the calculation of shock waves}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--64}, publisher = {mathdoc}, volume = {34}, number = {10}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/} }
TY - JOUR AU - O. A. Kovyrkina AU - A. A. Kurganov AU - V. V. Ostapenko TI - Comparative analysis of the accuracy of three different schemes in the calculation of shock waves JO - Matematičeskoe modelirovanie PY - 2022 SP - 43 EP - 64 VL - 34 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/ LA - ru ID - MM_2022_34_10_a2 ER -
%0 Journal Article %A O. A. Kovyrkina %A A. A. Kurganov %A V. V. Ostapenko %T Comparative analysis of the accuracy of three different schemes in the calculation of shock waves %J Matematičeskoe modelirovanie %D 2022 %P 43-64 %V 34 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/ %G ru %F MM_2022_34_10_a2
O. A. Kovyrkina; A. A. Kurganov; V. V. Ostapenko. Comparative analysis of the accuracy of three different schemes in the calculation of shock waves. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 43-64. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/
[1] S. K. Godunov, “Raznostnyj metod chislennogo rascheta razryvnych reshenij uravnenij gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl
[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl
[5] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl
[6] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl
[7] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[8] B. Cockburn, “An introduction to the Discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 150–268 | DOI | MR
[9] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[10] A. Kurganov, S. Noelle, G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations”, SIAM J. Sci. Comput., 23:3 (2001), 707–740 | DOI | MR | Zbl
[11] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl
[12] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh compleksov, Izd. Moscow State University, M., 2013, 472 pp.
[13] V. V. Ostapenko, “Convergence of finite difference schemes behind a shock front”, Comp. Math. and Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl
[14] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998), 813–828 | DOI | MR | Zbl
[15] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl
[16] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl
[17] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Mod. Comput. Simul., 6:2 (2014), 183–191 | DOI | MR | Zbl
[18] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | DOI | MR | Zbl
[19] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | DOI | MR | MR | Zbl
[20] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the Discontinuous Galerkin method in calculation of shock waves”, Comput. Math. and Math. Phys., 58 (2018), 1344–1353 | DOI | DOI | MR | Zbl
[21] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Comput. Technologies, 23:2 (2018), 37–54 | MR
[22] O. A. Kovyrkina, V. V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations”, Dokl. Math., 101:3 (2020), 209–213 | DOI | DOI | MR | Zbl
[23] V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Comp. Math. and Math. Phys., 38:8 (1998), 1299–1311 | MR | Zbl
[24] V. V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[25] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. and Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl
[26] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | DOI | MR | Zbl
[27] A. Kurganov, C. T. Lin, “On the reduction of numerical dissipation in central-upwind schemes”, Commun. Comput. Phys., 2:1 (2007), 141–163 http://global-sci.org/intro/article_detail/cicp/7900.html | MR | Zbl
[28] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. Appl. Math., Philadelphia, 1972, 48 pp. | MR
[29] B. L. Rozhdestvensky, N. N. Yanenko, Systemy kvazilineinykh uravnenii, Nauka, M., 1978, 689 pp. | MR
[30] P. D. Lax, B. Wendroff, “Systems of conservation laws”, Commun. Pure Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl
[31] S. Gottlieb, C. W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl
[32] S. Gottlieb, D. Ketcheson, C. W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Sci. Publishing Co. Pte. Ltd., Hackensack, NJ, 2011 | DOI | MR | Zbl
[33] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numer., 29 (2020), 701–762 | DOI | MR
[34] R. Hirsh, “Higher order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comput. Phys., 19:1 (1975), 90–109 | DOI | MR | Zbl
[35] A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal, B. C. Weinberg, “Generalized OCI schemes for boundary layer problems”, Math. Comp., 35:6 (1980), 695–731 | DOI | MR
[36] O. M. Belotserkovskii, A. P. Byrkin, A. P. Mazurov, A. I. Tolstykh, “Higher-order accuracy difference method for computing viscous gas flows”, U.S.S.R. Comput. Math. Math. Phys., 22:6 (1982), 206–216 | DOI | MR | Zbl | Zbl
[37] A. I. Tolstykh, Compactnye raznostnye skhemy i ih primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 231 pp. | MR
[38] V. V. Ostapenko, “Symmetric compact schemes with artificial viscosities of increased order of divergence”, Comput. Math. Math. Phys., 42:7 (2002), 980–999 | MR | Zbl
[39] R. W. MacCormack, The effect of viscosity in hypervelosity impact cratering, AIAA Paper 69-354, 1969 | DOI
[40] J. J. Stoker, Water Waves: The mathematical theory with applications, Wiley, New York, 1957, 600 pp. | MR