Comparative analysis of the accuracy of three different schemes in the calculation of shock waves
Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 43-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We perform a comparative accuracy study of the weighted essentially non-oscillatory (WENO), compact high-order weak approximation (CWA) and central-upwind (CU) schemes used to compute discontinuous solutions containing shocks propagating with variable velocity. We demonstrate that the accuracy of the formally high-order WENO and CU schemes, which are constructed using nonlinear flux correction mechanisms, reduces to the first order after the formation of shocks. This is done by measuring the integral convergence on intervals containing the region of shock wave influence. At the same time, the CWA scheme, which is designed to be high-order in the weak sense and does not rely on any nonlinear flux corrections, retains approximately the second order of integral convergence even in the regions of shock wave influence. As a result, in these areas, the accuracy of the WENO and CU schemes is significantly lower than the accuracy of the CWA scheme. We provide a theoretical justification of these numerical results.
Keywords: weak solutions with shocks, numerical schemes, increased order of convergence.
@article{MM_2022_34_10_a2,
     author = {O. A. Kovyrkina and A. A. Kurganov and V. V. Ostapenko},
     title = {Comparative analysis of the accuracy of three different schemes in the calculation of shock waves},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--64},
     publisher = {mathdoc},
     volume = {34},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - A. A. Kurganov
AU  - V. V. Ostapenko
TI  - Comparative analysis of the accuracy of three different schemes in the calculation of shock waves
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 43
EP  - 64
VL  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/
LA  - ru
ID  - MM_2022_34_10_a2
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A A. A. Kurganov
%A V. V. Ostapenko
%T Comparative analysis of the accuracy of three different schemes in the calculation of shock waves
%J Matematičeskoe modelirovanie
%D 2022
%P 43-64
%V 34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/
%G ru
%F MM_2022_34_10_a2
O. A. Kovyrkina; A. A. Kurganov; V. V. Ostapenko. Comparative analysis of the accuracy of three different schemes in the calculation of shock waves. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 43-64. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a2/

[1] S. K. Godunov, “Raznostnyj metod chislennogo rascheta razryvnych reshenij uravnenij gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl

[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl

[5] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[6] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[7] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[8] B. Cockburn, “An introduction to the Discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 150–268 | DOI | MR

[9] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[10] A. Kurganov, S. Noelle, G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations”, SIAM J. Sci. Comput., 23:3 (2001), 707–740 | DOI | MR | Zbl

[11] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl

[12] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh compleksov, Izd. Moscow State University, M., 2013, 472 pp.

[13] V. V. Ostapenko, “Convergence of finite difference schemes behind a shock front”, Comp. Math. and Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl

[14] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998), 813–828 | DOI | MR | Zbl

[15] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 https://www.jstor.org/stable/2587267 | DOI | MR | Zbl

[16] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl

[17] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Mod. Comput. Simul., 6:2 (2014), 183–191 | DOI | MR | Zbl

[18] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | DOI | MR | Zbl

[19] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | DOI | MR | MR | Zbl

[20] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the Discontinuous Galerkin method in calculation of shock waves”, Comput. Math. and Math. Phys., 58 (2018), 1344–1353 | DOI | DOI | MR | Zbl

[21] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Comput. Technologies, 23:2 (2018), 37–54 | MR

[22] O. A. Kovyrkina, V. V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations”, Dokl. Math., 101:3 (2020), 209–213 | DOI | DOI | MR | Zbl

[23] V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Comp. Math. and Math. Phys., 38:8 (1998), 1299–1311 | MR | Zbl

[24] V. V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[25] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. and Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl

[26] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | DOI | MR | Zbl

[27] A. Kurganov, C. T. Lin, “On the reduction of numerical dissipation in central-upwind schemes”, Commun. Comput. Phys., 2:1 (2007), 141–163 http://global-sci.org/intro/article_detail/cicp/7900.html | MR | Zbl

[28] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. Appl. Math., Philadelphia, 1972, 48 pp. | MR

[29] B. L. Rozhdestvensky, N. N. Yanenko, Systemy kvazilineinykh uravnenii, Nauka, M., 1978, 689 pp. | MR

[30] P. D. Lax, B. Wendroff, “Systems of conservation laws”, Commun. Pure Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl

[31] S. Gottlieb, C. W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl

[32] S. Gottlieb, D. Ketcheson, C. W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Sci. Publishing Co. Pte. Ltd., Hackensack, NJ, 2011 | DOI | MR | Zbl

[33] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numer., 29 (2020), 701–762 | DOI | MR

[34] R. Hirsh, “Higher order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comput. Phys., 19:1 (1975), 90–109 | DOI | MR | Zbl

[35] A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal, B. C. Weinberg, “Generalized OCI schemes for boundary layer problems”, Math. Comp., 35:6 (1980), 695–731 | DOI | MR

[36] O. M. Belotserkovskii, A. P. Byrkin, A. P. Mazurov, A. I. Tolstykh, “Higher-order accuracy difference method for computing viscous gas flows”, U.S.S.R. Comput. Math. Math. Phys., 22:6 (1982), 206–216 | DOI | MR | Zbl | Zbl

[37] A. I. Tolstykh, Compactnye raznostnye skhemy i ih primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 231 pp. | MR

[38] V. V. Ostapenko, “Symmetric compact schemes with artificial viscosities of increased order of divergence”, Comput. Math. Math. Phys., 42:7 (2002), 980–999 | MR | Zbl

[39] R. W. MacCormack, The effect of viscosity in hypervelosity impact cratering, AIAA Paper 69-354, 1969 | DOI

[40] J. J. Stoker, Water Waves: The mathematical theory with applications, Wiley, New York, 1957, 600 pp. | MR