Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed
Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 20-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a software system for algorithms modeling for nanosatellilte motion control on laboratory facility with an aerodynamic table. The structure of the program, mock-ups motion mathematical models are presented, algorithms for nanosatellite mockup control and navigation on a plane are described. The software system provides communication between the station and on-board computers of mock-ups on the table, the mockups receive information about the position on the aerodynamic table based on the results of camera image processing. Before the running of the experiments, preliminary calibration tests are carried out, the perturbations acting on the table are determined and the magnitudes of the control forces of the actuators are estimated. Experiments on the autonomous mock-up motion in nanosatellite formation flying tasks are carried out at the laboratory facility, and various approaches to the active removal of space debris are tested.
Keywords: nanosatellite, software system, control algorithms, aerodynamic table, formation flying.
Mots-clés : motion simulation
@article{MM_2022_34_10_a1,
     author = {F. A. Kozin},
     title = {Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--42},
     publisher = {mathdoc},
     volume = {34},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/}
}
TY  - JOUR
AU  - F. A. Kozin
TI  - Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 20
EP  - 42
VL  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/
LA  - ru
ID  - MM_2022_34_10_a1
ER  - 
%0 Journal Article
%A F. A. Kozin
%T Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed
%J Matematičeskoe modelirovanie
%D 2022
%P 20-42
%V 34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/
%G ru
%F MM_2022_34_10_a1
F. A. Kozin. Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 20-42. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/

[1] T. Rybus, K. Seweryn, “Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters”, Acta Astronautica, 120 (2016), 239–259 | DOI

[2] A. Robertson, G. Inalhan, J. P. How, “Spacecraft formation flying control design for the Orion mission”, Proc. of the AIAA Guidance, Navigation and Control Conf, 1999, 14 pp.

[3] D. S. Ivanov, M. Yu. Ovchinnikov, “Matematicheskoe modelirovanie upravliaemogo dvizheniia mnogoelementnoi sistemy”, Preprint IPM im. M.V. Keldysha RAN, 2008, 072, 32 pp.

[4] B. E. Tweddle, “Relative computer vision-based navigation for small inspection spacecraft”, Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2011, 15 pp. | MR | Zbl

[5] C. Andrade et al, “Robust Control Applied Towards Rendezvous and Docking”, Proceedings of the European Control Conference, 2009, 6 pp.

[6] G. Di Mauro et al, “Experimental Implementation of SDRE Method for Autonomous Rendezvous and Docking Maneuvering”, Proceedings of the 5th International Conference on Spacecraft Formation Flying Missions and Technologies, 2013, 15 pp.

[7] G. Guglieri et al, “Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation”, Acta Astronautica, 94:1 (2014), 395–408 | DOI

[8] R. Bevilacqua et al, “Guidance navigation and control for autonomous multiple spacecraft assembly: Analysis and experimentation”, International Journal of Aerospace Engineering. Hindawi Limited, 2011 (2011)

[9] F. Curti, M. Romano, R. Bevilacqua, “Lyapunov-Based Thrusters-Selection for Spacecraft Control: Analysis and Experimentation”, Journal of Guidance, Control, and Dynamics, 33:4 (2010), 1143–1160 | DOI

[10] N. Uyama et al, “Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture”, IEEE International Conference on Intelligent Robots and Systems, 2012, 4477–4482

[11] Z. Zhao, J. Zhao, H. Liu, Development of a landing mechanism for asteroids with soft surface, International Journal of Aerospace Engineering, 2013, 2013, 9 pp. | DOI

[12] T. Rybus, “Point-to-Point Motion Planning of a Free-Floating Space Manipulator Using the Rapidly-Exploring Random Trees (RRT) Method”, Robotica. Cambridge University Press, 38:6 (2020), 957–982

[13] D. Bindel i dr., “Sistema opredeleniia polozheniia i orientatsii maketa sputnika na osnove bloka inertsialnykh datchikov i zvezdnogo datchika”, Preprinty IPM im. M.V. Keldysha, 2011, 024, 30 pp.

[14] M. Sabatini et al, “Image based control of the “PINOCCHIO” experimental free flying platform”, Acta Astronautica, 94:1 (2014), 480–492 | DOI

[15] R. Oshana, “Overview of Embedded Systems and Real-Time Systems”, DSP Software Development Techniques for Embedded and Real-Time Systems, Elsevier, 2006, 19–34 | DOI

[16] P. Tsiotras, “ASTROS: A 5DOF experimental facility for research in space proximity operations”, Advances in the Astronautical Sciences, 151 (2014), 717–730

[17] M. D. Koptev, N. N. Proshunin, D. S. Ivanov, “Opredelenie dvizheniia maketov sistemy upravleniia mikrosputnikov na aerodinamicheskom stole s ispolzovaniem videokamery”, Preprinty IPM im. M.V. Keldysha, 2015, 109, 32 pp.

[18] SPUTNIKS rossiiskaia chastnaia kosmicheskaia kompaniia (accessed: 24.06.2022)

[19] S. Garrido-Jurado et al, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognition. Pergamon, 47:6 (2014), 2280–2292 | DOI

[20] D. Ivanov et al, “Determination of disturbances acting on small satellite mock-up on air bearing table”, Acta Astronautica. Elsevier Ltd, 142 (2018), 265–276 | DOI

[21] D. S. Ivanov i dr., “Upravlenie poleznoi nagruzkoi vozdushnogo shara”, Preprint IPM im. M.V. Keldysha RAN, 2010, 015, 28 pp.

[22] M. Haghshenas Jaryani, “An effective manipulator trajectory planning with obstacles using virtual potential field method”, Conference Proceedings — IEEE International Conference on Systems, Man and Cybernetics, 2007, 1573–1578

[23] M. R. Akhloumadi, D. Ivanov, F. Kozin, “Comparison of Relative Motion Control Algorithms for Point Capturing of Space Debris Object”, Proc. of 72 International Astronautical Congress (IAC), 2021, IAC-20.A6.5.3, 10 pp.

[24] D. Ivanov et al, “Simulation and Laboratory Testing of the 3U CubeSat Control in the Proximity of Space Debris”, Proc. of 71st International Astronautical Congress (IAC), 2020, IAC-21.A6.5.5, 10 pp.

[25] D. Ivanov, F. Kozin, M. Akhloumadi, “Laboratory study of control algorithms for debris removal using cubesat”, Advances in Aerospace Sciences, 173 (2020), 101–117