Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_10_a1, author = {F. A. Kozin}, title = {Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--42}, publisher = {mathdoc}, volume = {34}, number = {10}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/} }
TY - JOUR AU - F. A. Kozin TI - Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed JO - Matematičeskoe modelirovanie PY - 2022 SP - 20 EP - 42 VL - 34 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/ LA - ru ID - MM_2022_34_10_a1 ER -
F. A. Kozin. Software system for modeling of nanosatellites motion control algorithms using planar air-bearing testbed. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 20-42. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a1/
[1] T. Rybus, K. Seweryn, “Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters”, Acta Astronautica, 120 (2016), 239–259 | DOI
[2] A. Robertson, G. Inalhan, J. P. How, “Spacecraft formation flying control design for the Orion mission”, Proc. of the AIAA Guidance, Navigation and Control Conf, 1999, 14 pp.
[3] D. S. Ivanov, M. Yu. Ovchinnikov, “Matematicheskoe modelirovanie upravliaemogo dvizheniia mnogoelementnoi sistemy”, Preprint IPM im. M.V. Keldysha RAN, 2008, 072, 32 pp.
[4] B. E. Tweddle, “Relative computer vision-based navigation for small inspection spacecraft”, Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2011, 15 pp. | MR | Zbl
[5] C. Andrade et al, “Robust Control Applied Towards Rendezvous and Docking”, Proceedings of the European Control Conference, 2009, 6 pp.
[6] G. Di Mauro et al, “Experimental Implementation of SDRE Method for Autonomous Rendezvous and Docking Maneuvering”, Proceedings of the 5th International Conference on Spacecraft Formation Flying Missions and Technologies, 2013, 15 pp.
[7] G. Guglieri et al, “Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation”, Acta Astronautica, 94:1 (2014), 395–408 | DOI
[8] R. Bevilacqua et al, “Guidance navigation and control for autonomous multiple spacecraft assembly: Analysis and experimentation”, International Journal of Aerospace Engineering. Hindawi Limited, 2011 (2011)
[9] F. Curti, M. Romano, R. Bevilacqua, “Lyapunov-Based Thrusters-Selection for Spacecraft Control: Analysis and Experimentation”, Journal of Guidance, Control, and Dynamics, 33:4 (2010), 1143–1160 | DOI
[10] N. Uyama et al, “Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture”, IEEE International Conference on Intelligent Robots and Systems, 2012, 4477–4482
[11] Z. Zhao, J. Zhao, H. Liu, Development of a landing mechanism for asteroids with soft surface, International Journal of Aerospace Engineering, 2013, 2013, 9 pp. | DOI
[12] T. Rybus, “Point-to-Point Motion Planning of a Free-Floating Space Manipulator Using the Rapidly-Exploring Random Trees (RRT) Method”, Robotica. Cambridge University Press, 38:6 (2020), 957–982
[13] D. Bindel i dr., “Sistema opredeleniia polozheniia i orientatsii maketa sputnika na osnove bloka inertsialnykh datchikov i zvezdnogo datchika”, Preprinty IPM im. M.V. Keldysha, 2011, 024, 30 pp.
[14] M. Sabatini et al, “Image based control of the “PINOCCHIO” experimental free flying platform”, Acta Astronautica, 94:1 (2014), 480–492 | DOI
[15] R. Oshana, “Overview of Embedded Systems and Real-Time Systems”, DSP Software Development Techniques for Embedded and Real-Time Systems, Elsevier, 2006, 19–34 | DOI
[16] P. Tsiotras, “ASTROS: A 5DOF experimental facility for research in space proximity operations”, Advances in the Astronautical Sciences, 151 (2014), 717–730
[17] M. D. Koptev, N. N. Proshunin, D. S. Ivanov, “Opredelenie dvizheniia maketov sistemy upravleniia mikrosputnikov na aerodinamicheskom stole s ispolzovaniem videokamery”, Preprinty IPM im. M.V. Keldysha, 2015, 109, 32 pp.
[18] SPUTNIKS rossiiskaia chastnaia kosmicheskaia kompaniia (accessed: 24.06.2022)
[19] S. Garrido-Jurado et al, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognition. Pergamon, 47:6 (2014), 2280–2292 | DOI
[20] D. Ivanov et al, “Determination of disturbances acting on small satellite mock-up on air bearing table”, Acta Astronautica. Elsevier Ltd, 142 (2018), 265–276 | DOI
[21] D. S. Ivanov i dr., “Upravlenie poleznoi nagruzkoi vozdushnogo shara”, Preprint IPM im. M.V. Keldysha RAN, 2010, 015, 28 pp.
[22] M. Haghshenas Jaryani, “An effective manipulator trajectory planning with obstacles using virtual potential field method”, Conference Proceedings — IEEE International Conference on Systems, Man and Cybernetics, 2007, 1573–1578
[23] M. R. Akhloumadi, D. Ivanov, F. Kozin, “Comparison of Relative Motion Control Algorithms for Point Capturing of Space Debris Object”, Proc. of 72 International Astronautical Congress (IAC), 2021, IAC-20.A6.5.3, 10 pp.
[24] D. Ivanov et al, “Simulation and Laboratory Testing of the 3U CubeSat Control in the Proximity of Space Debris”, Proc. of 71st International Astronautical Congress (IAC), 2020, IAC-21.A6.5.5, 10 pp.
[25] D. Ivanov, F. Kozin, M. Akhloumadi, “Laboratory study of control algorithms for debris removal using cubesat”, Advances in Aerospace Sciences, 173 (2020), 101–117