Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir
Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 108-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a mathematical model and algorithm of numerical modeling of threephase mixture of steam-water-oil in porous media under thermal-steam treatment. Twodimension problem and convection-diffusion mechanism of heat and mass transfer of mixture are considered. Physical properties of porous media are assumed homogeneous and isotropic. Explicit accounting of fracture structure is absent. Properties of steam and water are considered independent of thermodynamic parameters of the system. Physical properties of oil are also independent of thermodynamic parameters of system except for dynamic viscosity, which is depends on temperature. Description of variable steam saturation, water saturation and oil saturation is made using transient mass balance relations for each phase. From these relations and Darcy’s law an equation to calculate unsteady pressure distribution is received. Temperature calculations is implemented by heat conductivity equation with hypotheses of a quasi-equilibrium thermal state of all phases and a single temperature. The presented model also considers phase transitions between steam and water by W.H. Lee model. Finite volume method is used for spatial discretization of received equations and the direct Euler scheme is used for temporal discretization. Since the mass balance equations is highly nonlinear, the Newton’s method applied to solve them. Simulation of three-phase steam-water-oil mixture seepage through porous media under conditions of steam-gravity drainage was carried out using the constructed numerical scheme. During the analysis of the simulation results, the pecularities of proposed numerical method are shown.
Keywords: seepage, steam-thermal treatment, steam-assisted gravity drainage, mathematical model, numerical simulation, finite volume method
Mots-clés : phase transition.
@article{MM_2021_33_9_a6,
     author = {S. A. Bublik and M. A. Semin},
     title = {Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {108--128},
     publisher = {mathdoc},
     volume = {33},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/}
}
TY  - JOUR
AU  - S. A. Bublik
AU  - M. A. Semin
TI  - Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 108
EP  - 128
VL  - 33
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/
LA  - ru
ID  - MM_2021_33_9_a6
ER  - 
%0 Journal Article
%A S. A. Bublik
%A M. A. Semin
%T Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir
%J Matematičeskoe modelirovanie
%D 2021
%P 108-128
%V 33
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/
%G ru
%F MM_2021_33_9_a6
S. A. Bublik; M. A. Semin. Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 108-128. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/

[1] A. M. Al-Bahlani, T. Babadagli, “SAGD laboratory experimental and numerical simulation studies: A review of current status and future issues”, Journal of Petroleum Science and Engineering, 68:3-4 (2009), 135–150 | DOI

[2] R. M. Butler et al, “The gravity drainage of steam-heated heavy oil to parallel horizontal wells”, Journal of Canadian Petroleum Technology, 20:2 (1981) | DOI

[3] S. Li et al, “Experimental investigation of nitrogen-assisted SAGD in heavy-oil reservoirs: A two-dimensional visual analysis”, Fuel, 257 (2019), 116013 | DOI

[4] A. K. Singhal et al., “Screening and design criteria for steam assisted gravity drainage (SAGD) projects”, SPE Inter. Conf. on Horizontal Well Technology, Soc. of Petroleum Eng., 1998

[5] R. M. Butler et al., “Progress in the in situ recovery of heavy oils and bitumen”, Journal of Canadian Petroleum Technology, 41:1 (2002) | DOI

[6] A. Rahimbakhsh et al., “An Improved Mathematical Model for Accurate Prediction of the Heavy Oil Production Rate during the SAGD Process”, Processes, 8:2 (2020), 235 | DOI

[7] R. M. Butler et al., “A new approach to the modelling of steam-assisted gravity drainage”, Journal of Canadian Petroleum Technology, 24:03 (1985), 42–51 | DOI

[8] M. Heidari et al., “Effect of drainage height and permeability on SAGD performance”, Journal of Petroleum Science and Engineering, 68:1–2 (2009), 99–106 | DOI | MR

[9] A. A. Kostina, M. S. Zhelnin, O. A. Plekhov, “Numerical analysis of a caprock integrity during oil production by steam-assisted gravity drainage method”, Frattura ed Integrità Strutturale, 13:49 (2019), 302–313 | DOI

[10] A. A. Kostina, M. S. Zhelnin, O. A. Plekhov, “Analysis of models for porosity evolution in reservoir during steam injection”, PNRPU Mechanics Bulletin, 2019, no. 4, 91–105 | DOI

[11] I. I. Bogdanov, K. El Ganaoui, A. M. Kamp, “COMSOL 2D Simulation of Heavy Oil Recovery by Steam Assisted Gravity Drainage”, Proc. of Europ. COMSOL Conf., 2007, 2007

[12] T. T. Freeman, R. J. Chalaturnyk, I. I. Bogdanov, “Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization”, COMSOL Conf., 2008, 9–11

[13] N. M. Temirbekov, D. R. Baygereev, “Chislennoe modelirovanie trexfaznykh neizotermicheskix potokov v poristoy srede s ispolzovaniem kontseptsii globalnogo davleniia”, Aktualnye problemy vychislitelnoy i prikladnoy matematiki, 2015, 751–757

[14] H. M. Nick, S. K. Matthäi, “Comparison of three FE-FV numerical schemes for single-and two-phase flow simulation of fractured porous media”, Transport in porous media, 90:2 (2011), 421–444 | DOI | MR

[15] A. P. Shevelev, Matematicheskoe modelirovanie tsiklicheskogo teplovogo vozdeystviia na neftianye plasty, diss., 2005

[16] Bastian P. B. etc, “Numerical Simulation of Multiphase Flow in Fractured Porous Media”, Num. Treatment of Multiphase Flows in Porous Media, Lecture Notes in Phys., 552, 2000, 50–68 | DOI | MR | Zbl

[17] P. Bastian, Numerical Computation of Multiphase Flows in Porous Media, Habilitation Dissertation, Kiel, 1999, 236 pp.

[18] H. M. Goda, P. Behrenbruch, Using a Modified Brooks-Corey Model to Study Oil-Water Relative Permeability for Diverse Pore Structures, Society of Petroleum Eng., 2004, 14 pp.

[19] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaia gidromekhanika, Nedra, M., 1993, 416 pp.

[20] D. Sun, J. Xu, Q. Chen, “Modeling of the Evaporation and Condensation Phase-Change Problems with FLUENT”, Numerical Heat Transfer Part B: Fundamentals, 66 (2014), 326–342 | DOI

[21] S. Etermad, Micro-Scale Simulation of Evaporation, Condensation and Transport in Porous Media, master thesis, University of Calgary, 2016, 146 pp.

[22] S. A. Hosseini, R. Kouhikamali, “A numerical investigation of various phase change models on simulation of saturated film boiling heat transfer”, Heat Transfer Asian Research, 48:6 (2019), 1–19 | DOI | MR

[23] Iu. P. Konoplev, Nauchno-metodicheskie osnovy proektirovaniia i analiz termoshakhtnoi razrabotki neftianykh mestorozhdenii, diss. ... d-r tekhn. nauk, M., 2004, 253 pp.

[24] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its Applications, 113, Springer, 2016, 791 pp. | DOI | MR | Zbl

[25] R. Rzig, S. B. Nasrallah, N. B. Khedher, “Three-dimensional simulation of mass and heat transfer in drying unsaturated porous medium”, Heat Transfer Research, 48:11 (2017), 985–1005 | DOI

[26] S. S. Shcherbakov, “Ismerenie i analiz v realnom vremeni lokalnykh povrezhdeniiy pri iznosoustalostnykh ispytaniiakh”, Pribory i metody izmereniiy, 2019, 207–214