Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a6, author = {S. A. Bublik and M. A. Semin}, title = {Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {108--128}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/} }
TY - JOUR AU - S. A. Bublik AU - M. A. Semin TI - Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir JO - Matematičeskoe modelirovanie PY - 2021 SP - 108 EP - 128 VL - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/ LA - ru ID - MM_2021_33_9_a6 ER -
S. A. Bublik; M. A. Semin. Numerical simulation of a steam-water-oil mixture during thermal-steam treatment of reservoir. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 108-128. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a6/
[1] A. M. Al-Bahlani, T. Babadagli, “SAGD laboratory experimental and numerical simulation studies: A review of current status and future issues”, Journal of Petroleum Science and Engineering, 68:3-4 (2009), 135–150 | DOI
[2] R. M. Butler et al, “The gravity drainage of steam-heated heavy oil to parallel horizontal wells”, Journal of Canadian Petroleum Technology, 20:2 (1981) | DOI
[3] S. Li et al, “Experimental investigation of nitrogen-assisted SAGD in heavy-oil reservoirs: A two-dimensional visual analysis”, Fuel, 257 (2019), 116013 | DOI
[4] A. K. Singhal et al., “Screening and design criteria for steam assisted gravity drainage (SAGD) projects”, SPE Inter. Conf. on Horizontal Well Technology, Soc. of Petroleum Eng., 1998
[5] R. M. Butler et al., “Progress in the in situ recovery of heavy oils and bitumen”, Journal of Canadian Petroleum Technology, 41:1 (2002) | DOI
[6] A. Rahimbakhsh et al., “An Improved Mathematical Model for Accurate Prediction of the Heavy Oil Production Rate during the SAGD Process”, Processes, 8:2 (2020), 235 | DOI
[7] R. M. Butler et al., “A new approach to the modelling of steam-assisted gravity drainage”, Journal of Canadian Petroleum Technology, 24:03 (1985), 42–51 | DOI
[8] M. Heidari et al., “Effect of drainage height and permeability on SAGD performance”, Journal of Petroleum Science and Engineering, 68:1–2 (2009), 99–106 | DOI | MR
[9] A. A. Kostina, M. S. Zhelnin, O. A. Plekhov, “Numerical analysis of a caprock integrity during oil production by steam-assisted gravity drainage method”, Frattura ed Integrità Strutturale, 13:49 (2019), 302–313 | DOI
[10] A. A. Kostina, M. S. Zhelnin, O. A. Plekhov, “Analysis of models for porosity evolution in reservoir during steam injection”, PNRPU Mechanics Bulletin, 2019, no. 4, 91–105 | DOI
[11] I. I. Bogdanov, K. El Ganaoui, A. M. Kamp, “COMSOL 2D Simulation of Heavy Oil Recovery by Steam Assisted Gravity Drainage”, Proc. of Europ. COMSOL Conf., 2007, 2007
[12] T. T. Freeman, R. J. Chalaturnyk, I. I. Bogdanov, “Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization”, COMSOL Conf., 2008, 9–11
[13] N. M. Temirbekov, D. R. Baygereev, “Chislennoe modelirovanie trexfaznykh neizotermicheskix potokov v poristoy srede s ispolzovaniem kontseptsii globalnogo davleniia”, Aktualnye problemy vychislitelnoy i prikladnoy matematiki, 2015, 751–757
[14] H. M. Nick, S. K. Matthäi, “Comparison of three FE-FV numerical schemes for single-and two-phase flow simulation of fractured porous media”, Transport in porous media, 90:2 (2011), 421–444 | DOI | MR
[15] A. P. Shevelev, Matematicheskoe modelirovanie tsiklicheskogo teplovogo vozdeystviia na neftianye plasty, diss., 2005
[16] Bastian P. B. etc, “Numerical Simulation of Multiphase Flow in Fractured Porous Media”, Num. Treatment of Multiphase Flows in Porous Media, Lecture Notes in Phys., 552, 2000, 50–68 | DOI | MR | Zbl
[17] P. Bastian, Numerical Computation of Multiphase Flows in Porous Media, Habilitation Dissertation, Kiel, 1999, 236 pp.
[18] H. M. Goda, P. Behrenbruch, Using a Modified Brooks-Corey Model to Study Oil-Water Relative Permeability for Diverse Pore Structures, Society of Petroleum Eng., 2004, 14 pp.
[19] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaia gidromekhanika, Nedra, M., 1993, 416 pp.
[20] D. Sun, J. Xu, Q. Chen, “Modeling of the Evaporation and Condensation Phase-Change Problems with FLUENT”, Numerical Heat Transfer Part B: Fundamentals, 66 (2014), 326–342 | DOI
[21] S. Etermad, Micro-Scale Simulation of Evaporation, Condensation and Transport in Porous Media, master thesis, University of Calgary, 2016, 146 pp.
[22] S. A. Hosseini, R. Kouhikamali, “A numerical investigation of various phase change models on simulation of saturated film boiling heat transfer”, Heat Transfer Asian Research, 48:6 (2019), 1–19 | DOI | MR
[23] Iu. P. Konoplev, Nauchno-metodicheskie osnovy proektirovaniia i analiz termoshakhtnoi razrabotki neftianykh mestorozhdenii, diss. ... d-r tekhn. nauk, M., 2004, 253 pp.
[24] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its Applications, 113, Springer, 2016, 791 pp. | DOI | MR | Zbl
[25] R. Rzig, S. B. Nasrallah, N. B. Khedher, “Three-dimensional simulation of mass and heat transfer in drying unsaturated porous medium”, Heat Transfer Research, 48:11 (2017), 985–1005 | DOI
[26] S. S. Shcherbakov, “Ismerenie i analiz v realnom vremeni lokalnykh povrezhdeniiy pri iznosoustalostnykh ispytaniiakh”, Pribory i metody izmereniiy, 2019, 207–214