Mathematic modeling of spacecraft solar panels
Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 87-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the approach to mathematical modeling of the solar panels operation of a spacecraft flying in near-Earth orbit, that takes into account possible shading of the solar panels surface by the components of the spacecraft's external surface. Two models of the solar panel operation are being considered in the paper. The first one is based on the solution of the diode equation, the second one takes into account the area of the illuminated part of the solar array and the solar rays angle of incidence on its plane. The search for sunlit portions of the solar panels is carried out using an interactive geometric model of the spacecraft external surface by means of ray tracing. The said two models have been compared and examples have been given stating in which case one or another model is preferred. The current generated by the solar battery and calculated with the proposed mathematical model is compared with the processed telemetry data obtained from the Zvezda Service Module of the International Space Station.
Keywords: solar panels, mathematical modeling, spacecraft, geometric model
Mots-clés : International Space Station, diode equation.
@article{MM_2021_33_9_a5,
     author = {Vas. V. Sazonov},
     title = {Mathematic modeling of spacecraft solar panels},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {33},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/}
}
TY  - JOUR
AU  - Vas. V. Sazonov
TI  - Mathematic modeling of spacecraft solar panels
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 87
EP  - 107
VL  - 33
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/
LA  - ru
ID  - MM_2021_33_9_a5
ER  - 
%0 Journal Article
%A Vas. V. Sazonov
%T Mathematic modeling of spacecraft solar panels
%J Matematičeskoe modelirovanie
%D 2021
%P 87-107
%V 33
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/
%G ru
%F MM_2021_33_9_a5
Vas. V. Sazonov. Mathematic modeling of spacecraft solar panels. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 87-107. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/

[1] J. S. Hojnicki, R. D. Green, T. W. Kerslake, D. B. McKissock, J. J. Trudell, “Space Station Freedom electrical performance model”, 28th Intersociety Energy Conversion Engineering Conference (Atlanta, Georgia, 1993)

[2] M. Kh. Kui, L. V. Markin, “Raschet vzaimnogo zateneniia solnechnykh antenn kosmicheskikh letatelnykh apparatov”, Trudy MAI. Elektronnyi zhurnal, 2017, no. 93

[3] T. Li, W. Li, L. Yang, “Development of Spacecraft Solar Array Electrical Performance Simulation System”, 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) (Beijing, 2017), 735–738 | Zbl

[4] Open Inventor$^{\text{TM}}$, http://openinventor.com/

[5] R. Ramaprabha, B. L. Mathur, “A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions”, International Journal of Photoenergy, 12:6 (2012), 1–16 | DOI

[6] M. R. Akhmedov, “Metodika veroiatnostnogo rascheta moshchnosti solnechnykh batarei kosmicheskogo apparata pri chastichnom osveshchenii”, Izvestiia RAN. Energetika, 2018, no. 5, 109–123

[7] Vas. V. Sazonov, “Algoritm opredeleniia osveshchennosti solnechnykh batarei Rossiiskogo segmenta Mezhdunarodnoi kosmicheskoi stantsii”, Izvestiia MGTU «MAMI», 3:2 (20) (2014), 65–70

[8] Vas. V. Sazonov, “Postroenie interaktivnoi geometricheskoi modeli vneshnei poverkhnosti kosmicheskogo apparata”, Matematicheskoe modelirovanie, 32:6 (2020), 37–52 | MR | Zbl

[9] G. S. Rauschenbach, Solar Cell Array Design Handbook, Springer, Dordrecht, 1980, 501 pp.

[10] V. A. Letin, “Funktsionirovanie solnechnykh batarei v kosmicheskoi srede”, Model kosmosa, Nauchno-informatsionnoe izdanie v 2 t., v. 2, KDU, M., 2007, 561–594

[11] V. N. Gushchin, Osnovy ustroistva kosmicheskikh apparatov, Mashinostroenie, M., 2003, 272 pp.

[12] V. A. Matvienko, Elektronika, uchebnoe posobie, UMTS UPI, Ekaterinburg, 2012, 127 pp.

[13] V. I. Gorbulin, N. V. Radionov, D. L. Kargu, P. A. Komarov, N. N. Astakhov, “Opredelenie orientatsii kosmicheskogo apparata po izmereniiam zasvetki testovykh blokov solnechnykh batarei”, Trudy voenno-kosm. akademii im. A.F. Mozhaiskogo, 2015, no. 646, 134–138

[14] I. V. Belokonov, A. V. Kramlikh, I. A. Lomaka, P. N. Nikolaev, “Vosstanovlenie uglovogo dvizheniia kosmicheskogo apparata po dannym o tokosieeme s panelei solnechnykh batarei”, Izvestiia RAN. Teoriia i sistemy upravleniia, 2019, no. 2, 133–144 | Zbl

[15] V. Ia. Averbukh, D. M. Vainberg, E. A. Leshchinskii, “Razrabotka sistemy orientatsii solnechnykh batarei unifitsirovannoi kosmicheskoi platformy”, Voprosy elektromekhaniki, Trudy VNIIEM, 100, 2001, 97–103

[16] A. S. Zernov, V. D. Nikolaev, “Opyt ekspluatatsii solnechnykh batarei sluzhebnogo modulia Mezhdunarodnoi kosmicheskoi stantsii”, Kosmicheskaia tekhnika i tekhnologii, 2016, no. 1 (12), 29–38 | MR

[17] D. A. Vallado, P. Crawford, “SGP4 Orbit Determination”, AIAA/AAS Astrodynamics Specialist Conference (Honolulu, 2008) | Zbl

[18] I. K. Bazhinov, B. N. Petrov, V. D. Iastrebov, Navigatsionnoe obespechenie poleta orbitalnogo kompleksa “Saliut-6”–“Soiuz”–“Progress”, Nauka, M., 1985, 376 pp.

[19] K. R. Bairamov, V. V. Betanov, G. G. Stupak, Iu. M. Urlichich, Metody, modeli i algoritmy resheniia nekorrektnykh zadach navigatsionno-ballisticheskogo obespecheniia, Radiotekhnika, M., 2012, 357 pp.

[20] O. Montenbruck, T. Pfleger, Astronomy on the Personal Computer, Springer, Berlin, 1997, 255 pp.

[21] E. Haines, T. Akenine-Moller, Ray Tracing Gems. High-Quality and Real-Time Rendering, Apress, NY, 2019, 607 pp.

[22] Iu. S. Elizarov, A. V. Kuznetsov, R. M. Abdulkhalikov, A. G. Bideev, I. I. Khamits, “Energo-balans nauchno-energeticheskogo modulia pri ego avtonomnom polete i integratsii v Rossiiskii segment Mezhdunarodnoi kosmicheskoi stantsii”, Kosmicheskaia tekhnika i tekhnologii, 2019, no. 4 (27), 38–44

[23] M. R. Akhmedov, A. G. Bideev, E. Yu. Makarova, V. V. Sazonov, I. I. Khamits, “Sravnitelnyi analiz raschetnoi i eksperimentalnoi proizvoditelnosti solnechnykh batarei orbitalnogo kosmicheskogo apparata na primere sluzhebnogo modulia Rossiiskogo segmenta MKS”, Kosmicheskaia tekhnika i tekhnologii, 2018, no. 3 (22), 69–81

[24] F. G. Lemoine, S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Palvis, D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence, Y. M. Wang, R. G. Williamson, E. C. Pavlis, R. H. Rapp, T. R. Olson, The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, 1998, 584 pp.

[25] V. V. Beletskii, A. M. Ianshin, Vliianie aerodinamicheskikh sil na vrashatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, Kiev, 1984, 187 pp.

[26] GOST R 25645.166-2004. Atmosfera Zemli verkhniaia. Model plotnosti dlia ballisticheskogo obespecheniia poletov iskusstvennykh sputnikov Zemli, IPK Izdatelstvo standartov, M., 2004, 24 pp.