Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a5, author = {Vas. V. Sazonov}, title = {Mathematic modeling of spacecraft solar panels}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {87--107}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/} }
Vas. V. Sazonov. Mathematic modeling of spacecraft solar panels. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 87-107. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a5/
[1] J. S. Hojnicki, R. D. Green, T. W. Kerslake, D. B. McKissock, J. J. Trudell, “Space Station Freedom electrical performance model”, 28th Intersociety Energy Conversion Engineering Conference (Atlanta, Georgia, 1993)
[2] M. Kh. Kui, L. V. Markin, “Raschet vzaimnogo zateneniia solnechnykh antenn kosmicheskikh letatelnykh apparatov”, Trudy MAI. Elektronnyi zhurnal, 2017, no. 93
[3] T. Li, W. Li, L. Yang, “Development of Spacecraft Solar Array Electrical Performance Simulation System”, 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) (Beijing, 2017), 735–738 | Zbl
[4] Open Inventor$^{\text{TM}}$, http://openinventor.com/
[5] R. Ramaprabha, B. L. Mathur, “A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions”, International Journal of Photoenergy, 12:6 (2012), 1–16 | DOI
[6] M. R. Akhmedov, “Metodika veroiatnostnogo rascheta moshchnosti solnechnykh batarei kosmicheskogo apparata pri chastichnom osveshchenii”, Izvestiia RAN. Energetika, 2018, no. 5, 109–123
[7] Vas. V. Sazonov, “Algoritm opredeleniia osveshchennosti solnechnykh batarei Rossiiskogo segmenta Mezhdunarodnoi kosmicheskoi stantsii”, Izvestiia MGTU «MAMI», 3:2 (20) (2014), 65–70
[8] Vas. V. Sazonov, “Postroenie interaktivnoi geometricheskoi modeli vneshnei poverkhnosti kosmicheskogo apparata”, Matematicheskoe modelirovanie, 32:6 (2020), 37–52 | MR | Zbl
[9] G. S. Rauschenbach, Solar Cell Array Design Handbook, Springer, Dordrecht, 1980, 501 pp.
[10] V. A. Letin, “Funktsionirovanie solnechnykh batarei v kosmicheskoi srede”, Model kosmosa, Nauchno-informatsionnoe izdanie v 2 t., v. 2, KDU, M., 2007, 561–594
[11] V. N. Gushchin, Osnovy ustroistva kosmicheskikh apparatov, Mashinostroenie, M., 2003, 272 pp.
[12] V. A. Matvienko, Elektronika, uchebnoe posobie, UMTS UPI, Ekaterinburg, 2012, 127 pp.
[13] V. I. Gorbulin, N. V. Radionov, D. L. Kargu, P. A. Komarov, N. N. Astakhov, “Opredelenie orientatsii kosmicheskogo apparata po izmereniiam zasvetki testovykh blokov solnechnykh batarei”, Trudy voenno-kosm. akademii im. A.F. Mozhaiskogo, 2015, no. 646, 134–138
[14] I. V. Belokonov, A. V. Kramlikh, I. A. Lomaka, P. N. Nikolaev, “Vosstanovlenie uglovogo dvizheniia kosmicheskogo apparata po dannym o tokosieeme s panelei solnechnykh batarei”, Izvestiia RAN. Teoriia i sistemy upravleniia, 2019, no. 2, 133–144 | Zbl
[15] V. Ia. Averbukh, D. M. Vainberg, E. A. Leshchinskii, “Razrabotka sistemy orientatsii solnechnykh batarei unifitsirovannoi kosmicheskoi platformy”, Voprosy elektromekhaniki, Trudy VNIIEM, 100, 2001, 97–103
[16] A. S. Zernov, V. D. Nikolaev, “Opyt ekspluatatsii solnechnykh batarei sluzhebnogo modulia Mezhdunarodnoi kosmicheskoi stantsii”, Kosmicheskaia tekhnika i tekhnologii, 2016, no. 1 (12), 29–38 | MR
[17] D. A. Vallado, P. Crawford, “SGP4 Orbit Determination”, AIAA/AAS Astrodynamics Specialist Conference (Honolulu, 2008) | Zbl
[18] I. K. Bazhinov, B. N. Petrov, V. D. Iastrebov, Navigatsionnoe obespechenie poleta orbitalnogo kompleksa “Saliut-6”–“Soiuz”–“Progress”, Nauka, M., 1985, 376 pp.
[19] K. R. Bairamov, V. V. Betanov, G. G. Stupak, Iu. M. Urlichich, Metody, modeli i algoritmy resheniia nekorrektnykh zadach navigatsionno-ballisticheskogo obespecheniia, Radiotekhnika, M., 2012, 357 pp.
[20] O. Montenbruck, T. Pfleger, Astronomy on the Personal Computer, Springer, Berlin, 1997, 255 pp.
[21] E. Haines, T. Akenine-Moller, Ray Tracing Gems. High-Quality and Real-Time Rendering, Apress, NY, 2019, 607 pp.
[22] Iu. S. Elizarov, A. V. Kuznetsov, R. M. Abdulkhalikov, A. G. Bideev, I. I. Khamits, “Energo-balans nauchno-energeticheskogo modulia pri ego avtonomnom polete i integratsii v Rossiiskii segment Mezhdunarodnoi kosmicheskoi stantsii”, Kosmicheskaia tekhnika i tekhnologii, 2019, no. 4 (27), 38–44
[23] M. R. Akhmedov, A. G. Bideev, E. Yu. Makarova, V. V. Sazonov, I. I. Khamits, “Sravnitelnyi analiz raschetnoi i eksperimentalnoi proizvoditelnosti solnechnykh batarei orbitalnogo kosmicheskogo apparata na primere sluzhebnogo modulia Rossiiskogo segmenta MKS”, Kosmicheskaia tekhnika i tekhnologii, 2018, no. 3 (22), 69–81
[24] F. G. Lemoine, S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Palvis, D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence, Y. M. Wang, R. G. Williamson, E. C. Pavlis, R. H. Rapp, T. R. Olson, The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, 1998, 584 pp.
[25] V. V. Beletskii, A. M. Ianshin, Vliianie aerodinamicheskikh sil na vrashatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, Kiev, 1984, 187 pp.
[26] GOST R 25645.166-2004. Atmosfera Zemli verkhniaia. Model plotnosti dlia ballisticheskogo obespecheniia poletov iskusstvennykh sputnikov Zemli, IPK Izdatelstvo standartov, M., 2004, 24 pp.