Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a4, author = {S. V. Borzunov and M. E. Semenov and N. I. Sel'vesyuk and P. A. Meleshenko and A. M. Solovyov}, title = {Stochastic model of the hysteresis converter with a domain structure}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {60--86}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a4/} }
TY - JOUR AU - S. V. Borzunov AU - M. E. Semenov AU - N. I. Sel'vesyuk AU - P. A. Meleshenko AU - A. M. Solovyov TI - Stochastic model of the hysteresis converter with a domain structure JO - Matematičeskoe modelirovanie PY - 2021 SP - 60 EP - 86 VL - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a4/ LA - ru ID - MM_2021_33_9_a4 ER -
%0 Journal Article %A S. V. Borzunov %A M. E. Semenov %A N. I. Sel'vesyuk %A P. A. Meleshenko %A A. M. Solovyov %T Stochastic model of the hysteresis converter with a domain structure %J Matematičeskoe modelirovanie %D 2021 %P 60-86 %V 33 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a4/ %G ru %F MM_2021_33_9_a4
S. V. Borzunov; M. E. Semenov; N. I. Sel'vesyuk; P. A. Meleshenko; A. M. Solovyov. Stochastic model of the hysteresis converter with a domain structure. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 60-86. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a4/
[1] J. Dho, C. W. Leung, M. G. Blamire, “Universal Time Relaxation Behavior of the Exchange Bias in Ferromagnetic/antiferromagnetic Bilayers”, J. of Applied Physics, 99 (2006), 033910-1–033910-5 | DOI
[2] J. Ortiz-Lopez, F. Luty, “Optical Studies of Thermal Cycling and Hysteresis Effects in Elastic Order-disorder Phase Transformations. I. Pure Alkali-metal Cyanide Crystals”, Phys. Rev. B, 37:10 (1988), 5452–5460 | DOI
[3] K. Zhang, T. Zhao, H. Fujiwara, “Training Effect of Exchange Biased Iron-oxide/ferromagnet Systems”, Journal of Applied Physics, 89 (2001), 6910–6912 | DOI
[4] R. Cross, Unemployment: Natural Rate Epicycles or Hysteresis?, European Journal of Economics and Economic Policies: Intervention, 11:2 (2014), 136–148 | DOI
[5] Baker Hughes US Rig Count by Basin, https://rigcount.bakerhughes.com/na-rig-count/
[6] Crude Oil Future Contract (Dollars per Barrel), https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RCLC1&f=D
[7] B. Carboni, W. Lacarbonara, “Nonlinear dynamic characterization of a new hysteretic device: experiments and computations”, Nonlinear Dynamics, 83 (2016), 23–39 | DOI
[8] R. Cross, H. McNamara, A. Pokrovskii, D. Rachinskii, “A new paradigm for modelling hysteresis in macroeconomic flows”, Physica B: Condensed Matter, 403:2-3 (2008), 231–236 | DOI
[9] O. Klein, P. Krejčí, “Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations”, Nonlinear Analysis: Real World Applications, 4:5 (2003), 755–785 | DOI | MR | Zbl
[10] M. A. Janaideh, R. Naldi, L. Marconi, P. Krejčí, “A hybrid model for the play hysteresis operator”, Physica B, 430 (2013), 95–98 | DOI
[11] W. Lacarbonara, F. Vestroni, “Nonclassical Responses of Oscillators with Hysteresis”, Nonlinear Dynamics, 32 (2003), 235–258 | DOI | Zbl
[12] S. F. Masri, R. Ghanem, F. Arrate, J. P. Caffrey, “Stochastic Nonparametric Models of Uncertain Hysteretic Oscillators”, AIAA Journal, 44:10 (2006), 2319–2330 | DOI
[13] A. L. Medvedskii, P. A. Meleshenko, V. A. Nesterov, O. O. Reshetova, M. E. Semenov, A. M. Solovyov, “Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control”, J. of Computer and Systems Sciences International, 59:4 (2020), 533–556 | DOI | Zbl
[14] M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, “Stabilization of coupled inverted pendula: From discrete to continuous case”, J. of Vibration and Control, 27:1–2 (2021), 43–56 | DOI | MR
[15] M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, O. O. Reshetova, “Efficiency of hysteretic damper in oscillating systems”, Math. Modell. of Natur. Phenomena, 15 (2020), 43-1–43-14 | DOI | MR
[16] M. A. Krasnosel'skii, A. V. Pokrovskii, Systems with hysteresis, Springer-Verlag, Berlin–Heidelberg, 1989, 410 pp. | MR | MR | Zbl
[17] F. Ikhouane, J. Rodellar, “On the Hysteretic Bouc-Wen Model”, Nonlinear Dynamics, 42 (2005), 63–78 | DOI | MR | Zbl
[18] W. D. Iwan, “A distributed-element model for hysteresis and its steady-state dynamic response”, Journal of Applied Mechanics, Transactions ASME, 33:4 (1966), 893–900 | DOI
[19] C.-J. Lin, P. T. Lin, “Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model”, Comp. and Mathem. with Applications, 64 (2012), 766–787 | DOI
[20] M. F.M. Naser, F. Ikhouane, “Consistency of the Duhem Model with Hysteresis”, Math. Problems in Engineering, 2013, 586130, 16 pp. | DOI | MR | Zbl
[21] M. Belhaq, A. Bichri, J. Der Hogapian, J. Mahfoud, “Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam”, International Journal of Non-Linear Mechanics, 46:6 (2011), 828–833 | DOI
[22] M. Brokate, A. Pokrovskii, D. Rachinskii, O. Rasskazov, “Differential Equations with Hysteresis via a Canonical Example”, The Science of Hysteresis, 3-volume set, v. 1, eds. G. Bertotti, I.D. Mayergoyz, 2006, 125–291 | DOI | MR | Zbl
[23] H. J. Khasawneh, Z. S. Abo-Hammour, M. I. Al Saaideh, S. M. Momani, “Identification of hysteresis models using real-coded genetic algorithms”, Eur. Phys. J. Plus, 134 (2019), 507-1–507-17 | DOI
[24] C. Kuehn, C. Münch, “Generalized Play Hysteresis Operators in Limits of Fast-Slow Systems”, SIAM J. Applied Dynamical Systems, 16:3 (2017), 1650–1685 | DOI | MR | Zbl
[25] W. Lacarbonara, M. Cetraro, “Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers”, Intern. J. of Aeronautical Space Science, 12:4 (2011), 331–345 | DOI
[26] D. Rachinskii, “Realization of Arbitrary Hysteresis by a Low-dimensional Gradient Flow”, Discrete and Continuous Dynamical Systems B, 21:1 (2016), 227–243 | DOI | MR | Zbl
[27] P. D. Spanos, A. Matteo, A. Di Pirrotta, “Steady-state dynamic response of various hysteretic systems endowed with fractional derivative elements”, Nonlinear Dynamics, 98 (2019), 3113–3124 | DOI
[28] M. Eleuteri, E. Ipocoana, J. Kopfová, P. Krejčí, “Periodic solutions of a hysteresis model for breathing”, ESAIM: Mathematical Modelling and Numerical Analysis, 54:1 (2020), 255–271 | DOI | MR
[29] G. Friedman, P. Gurevich, S. McCarthy, D. Rachinskii, “Switching behaviour of two-phenotype bacteria in varying environment”, J. of Physics: Conference Series, 585:1 (2015), 012012-1–012012-12 | DOI
[30] A. Pimenov, T. C. Kelly, A. Korobeinikov, M. J. O'Callaghan, A. Pokrovskii, “Systems with Hysteresis in Mathematical Biology via a Canonical Example”, Mathematical Modeling, Clustering Algorithms and Applications, ed. C. L. Wilson, Nova Science Publishers, Inc., 2010, 34 pp.
[31] A. Pimenov, T. C. Kelly, A. Korobeinikov, M. J. O'Callaghan, D. Rachinskii, “Memory and Adaptive Behavior in Population Dynamics: Anti-predator Behavior as a Case Study”, Journal of mathematical biology, 74:6 (2017), 1533–1559 | DOI | MR | Zbl
[32] H. R. Noori, Hysteresis Phenomena in Biology, Springer, Berlin–Heidelberg, 2014, 45 pp. | MR | Zbl
[33] P. Krejčí, J. P. O'Kane, A. Pokrovskii, D. Rachinskii, “Properties of solutions to a class of differential models incorporating Preisach hysteresis operator”, Physica D: Nonlinear Phenomena, 241:22 (2012), 2010–2028 | DOI | MR
[34] F. Baronti, N. Femia, R. Saletti, C. Visone, W. Zamboni, “Preisach modelling of lithium-iron-phosphate battery hysteresis”, Journal of Energy Storage, 4 (2015), 51–61 | DOI
[35] J. Carmeliet, K. E.A. Van Den Abeele, “Application of the Preisach-Mayergoyz space model to analyze moisture effects on the nonlinear elastic response of rock”, Geophysical Research Letters, 29:7 (2002), 48-1–48-4 | DOI
[36] V. Franzitta, A. Viola, M. Trapanese, “Description of hysteresis in Lithium battery by classical Preisach model Advanced Materials Research”, Trans. Tech. Publications, 622 (2013), 1099–1103
[37] P. Krejčí, G. A. Monteiro, “Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling”, Discrete Continuous Dynamical Systems B, 24:7 (2019), 3051–3066 | DOI | MR | Zbl
[38] K. Łygas, P. Wolszczak, G. Litak, P. Sta̧czek, “Complex response of an oscillating vertical cantilever with clearance”, Meccanica, 54 (2019), 1689–1702 | DOI | MR
[39] G. Friedman, S. McCarthy, D. Rachinskii, “Hysteresis can grant fitness in stochastically varying environment”, PLoS One, 9,:7 (2014), e103241-1–e103241-9 | DOI
[40] I. D. Mayergoyz, M. Dimian, “Analysis of spectral noise density of hysteretic systems driven by stochastic processes”, Journal of Applied Physics, 93:10 (2003), 6826–6828 | DOI | MR
[41] D. Rachinskii, M. Ruderman, “Convergence of direct recursive algorithm for identification of Preisach hysteresis model with stochastic input”, SIAM Journal on Applied Mathematics, 76:4 (2016), 1270–1295 | DOI | MR | Zbl
[42] S. V. Borzunov, M. E. Semenov, N. I. Sel'vesyuk, P. A. Meleshenko, “Hysteretic Converters with Stochastic Parameters”, Math. Mod. and Comp. Simul., 12:2 (2020), 164–175 | DOI | MR
[43] S. V. Borzunov, M. E. Semenov, N. I. Sel'vesyuk, P. A. Meleshenko, “Generalized Play-Operator Under Stochastic Perturbations: An Analytic Approach”, Journal of Vibration Engineering Technologies, 9 (2021), 355–365 | DOI
[44] M. E. Semenov, S. V. Borzunov, P. A. Meleshenko, “Stochastic Preisach operator: definition within the design approach”, Nonlinear Dynamics, 101 (2020), 2599–2614 | DOI
[45] M. E. Semenov, P. A. Meleshenko, I. N. Ishchuk, D. D. Dmitriev, S. V. Borzunov, N. N. Nekrasova, “Non-ideal Relay with Random Parameters”, Trends in Mathematics, 11, eds. A. Korobeinikov, M. Caubergh, T. Lázaro, J. Sardanyés, Springer, 2019, 253–258 | DOI | MR | Zbl
[46] D. R. Cox, H. D. Miller, The Theory of Stochastic Processes, Methuen's monographs on applied probability and statistics, CRC Press, 1977, 408 pp.
[47] A. D. Venttsel, Kurs teorii sluchainykh protsessov, 2-e izd., dop., Nauka. Fizmatlit, M., 1996, 399 pp. | MR
[48] A. N. Shiryaev, Probability, Second ed., Springer, 2016, 621 pp. | MR | Zbl
[49] M. M. Borovikova, V. G. Zadorozhnii, “Nakhozhdenie momentnykh funktsii resheniia dvumernogo uravneniia diffuzii so sluchainymi koeffitsientami”, Izvestiia Rossiiskoi akademii nauk. Seriia matematicheskaia, 74:6 (2010), 27–54 | MR | Zbl
[50] V. G. Zadorozhniy, G. A. Kurina, “Mean Periodic Solutions of a Linear Inhomogeneous First-Order Differential Equation with Random Coefficients”, Differential Equations, 50:6 (2014), 722–741 | DOI | MR | Zbl