Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a2, author = {S. A. Grabovenskaya and V. V. Zaviyalov and A. A. Shestakov}, title = {Two approaches to effectively reduce the size of radiative heat transfer problems in multidimensional geometry}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {35--46}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a2/} }
TY - JOUR AU - S. A. Grabovenskaya AU - V. V. Zaviyalov AU - A. A. Shestakov TI - Two approaches to effectively reduce the size of radiative heat transfer problems in multidimensional geometry JO - Matematičeskoe modelirovanie PY - 2021 SP - 35 EP - 46 VL - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a2/ LA - ru ID - MM_2021_33_9_a2 ER -
%0 Journal Article %A S. A. Grabovenskaya %A V. V. Zaviyalov %A A. A. Shestakov %T Two approaches to effectively reduce the size of radiative heat transfer problems in multidimensional geometry %J Matematičeskoe modelirovanie %D 2021 %P 35-46 %V 33 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a2/ %G ru %F MM_2021_33_9_a2
S. A. Grabovenskaya; V. V. Zaviyalov; A. A. Shestakov. Two approaches to effectively reduce the size of radiative heat transfer problems in multidimensional geometry. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 35-46. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a2/
[1] M. Necati Ozisik, Radiative Transfer and Interactions with Conduction and Convection, John Wiley Sons Inc, 1973
[2] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985
[3] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, Computational Math. and Mathematical Physics, 4:6 (1964), 136–149 | DOI
[4] A. S. Eddington, The Internal Constitution of Stars, Cambridge University Press, 1926 | MR | Zbl
[5] D. Yu. Anistratov, E. N. Aristova, V. Ya. Gol'din, “Nelineinyi metod resheniia zadach perenosa izlucheniia v srede”, Matematicheskoe modelirovanie, 8:12 (1996), 3–28 | MR | Zbl
[6] E. N. Aristova, V. Ya. Gol'din, A. V. Kolpakov, “Metodika rascheta perenosa izlucheniia v tele vrashcheniia”, Matematicheskoe modelirovanie, 9:3 (1997), 91–108 | MR | Zbl
[7] E. N. Aristova, V. Ya. Gol'din, “Low_cost Calculation of Multigroup Neutron Transport Equation for the Recalculation of Spectrum_Averaged Cross Sections”, Mathematical Models and Computer Simulations, 1:5 (2009), 561–572 | DOI | Zbl
[8] D. Y. Anistratov, V. Ya. Gol'din, “Multilevel Quasi-diffusion Methods for Solving Multi-group Neutron Transport k-Eigenvalue Problems in One-Dimensional Slab Geometry”, Nuclear Science and Engineering, 169 (2011), 111–132 | DOI
[9] G. V. Dolgoleva, “Metodika rascheta dvizheniia dvukhtemperaturnogo izluchaiushchego gaza (SND)”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 1983, no. 2(13), 29–33
[10] N. G. Karlyhanov, M. Yu. Kozmanov, “Uchet kineticheskikh effektov v diffuzionnom priblizhenii dlia rascheta perenosa izlucheniia”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2010, no. 4, 3–9
[11] A. A. Shestakov, “Study of Various Approximations Used in Modeling Radiative Heat Transfer Problems”, Math. Models Computer Simul., 13:2 (2021), 231–243 | DOI | MR | Zbl
[12] A. A. Shestakov, “Analysis of the Quasi-Transfer Approximation in Problems with Analytical Solution”, Computational Math. and Mathematical Physics, 60:5 (2020), 833–843 | DOI | MR | Zbl
[13] A. D. Gadzhiev, V. V. Zaviyalov, A. A. Shestakov, “Primenenie TVD podkhoda k DS$_n$ metodu resheniia uravneniia perenosa teplovogo izlucheniia”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2009, no. 2, 37–48
[14] A. D. Gadzhiev, V. V. Zaviyalov, A. A. Shestakov, “Primenenie TVD podkhoda k DS$_n$ metodu resheniia uravneniia perenosa teplovogo izlucheniia v osesimmetrichnoi RZ geometrii”, VANT, seriia «Matem. modelirovanie fizicheskikh protsessov», 2010, no. 2, 30–39
[15] S. A. Grabovenskaya, A. A. Shestakov, “Analiz nekotorykh skhem dlia resheniia uravneniia perenosa izlucheniia kvazidiffuzionnym metodom”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2011, no. 4, 3–15
[16] S. A. Grabovenskaya, V. V. Zaviyalov, A. A. Shestakov, “Konechno-raznostnaia skhema GROM dlia resheniia dvumernoi kvazidiffuzionnnoi sistemy perenosa teplovogo izlucheniia”, VANT, seriia «Matem. modelirovanie fizicheskikh protsessov», 2014, no. 3, 47–58
[17] A. D. Gadzhiev, V. N. Seleznev, E. M. Romanova, A. A. Shestakov, “Metodika TOM4-KD dlia matematicheskogo modelirovaniia dvumernykh uravnenii perenosa izlucheniia v mnogogruppovom kvazidiffuzionnom priblizhenii”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2001, no. 4, 48–59
[18] A. D. Gadzhiev, A. A. Shestakov, “Metod vydeleniia diagonalnoi matritsy dlia chislennogo resheniia uravneniia perenosa izlucheniia v P$_1$-priblizhenii po skheme ROMB”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2006, no. 1, 3–13
[19] J. A. Fleck, J. D. Cummings, “An Implicit Monte-Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation Transport”, J. C. P., 8:3 (1971), 313–342 | MR | Zbl
[20] Yu. V. Yanilkin, Yu. A. Bondarenko, E. A. Goncharov, A. R. Guzhova, V. Yu. Kolobianin, V. N. Sofronov, V. P. Statsenko, Testy dlia gidrokodov, modeliruiushchikh udarnovolnovye techeniia v mnogokomponentnykh sredakh, v. 1, FGUP «RFIATS-VNIIEF», Sarov, 2017