Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a1, author = {N. V. Fedosova and G. N. Berchenko and D. V. Mashoshin}, title = {Development the mathematical model neural network for morphological assessment of repair and remodeling of bone defect}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {22--34}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a1/} }
TY - JOUR AU - N. V. Fedosova AU - G. N. Berchenko AU - D. V. Mashoshin TI - Development the mathematical model neural network for morphological assessment of repair and remodeling of bone defect JO - Matematičeskoe modelirovanie PY - 2021 SP - 22 EP - 34 VL - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a1/ LA - ru ID - MM_2021_33_9_a1 ER -
%0 Journal Article %A N. V. Fedosova %A G. N. Berchenko %A D. V. Mashoshin %T Development the mathematical model neural network for morphological assessment of repair and remodeling of bone defect %J Matematičeskoe modelirovanie %D 2021 %P 22-34 %V 33 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a1/ %G ru %F MM_2021_33_9_a1
N. V. Fedosova; G. N. Berchenko; D. V. Mashoshin. Development the mathematical model neural network for morphological assessment of repair and remodeling of bone defect. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 22-34. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a1/
[1] R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996 | Zbl
[2] S. Haykin, Neural Networks and Learning Machines, 3rd Edition
[3] T. Brajlovskaya, G. Berchenko, N. Fedosova, Method for diagnosing and correcting bone autograft after reconstructive osteoplastic surgery, Patent number: RU 2735648 C1 Patent office: Russia Publication year: 2020, Application number: 2020103779, Registration date: 01/29/2020, Publication date: 11/05/2020
[4] Liron Pantanowitz, Gabriela M. Quiroga-Garza, Lilach BienRonen, Heled Daphna, Laifenfeld, Chaim Linhart et al, An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study, Free DOI Lookup URL: (accessed 12.05.2021) https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30159-X/fulltext#seccestitle180
[5] Kunal Nagpal, Craig Mermel, Using AI to identify the aggressiveness of prostate cancer, Google Health, Free DOI Lookup URL: , 2020 (accessed 12.05.2021) https://blog.google/technology/health/using-ai-identify-aggressiveness-prostate-cancer/
[6] Jeremy R. Burt, Neslisah Torosdagli, Naji Khosravan, Harish RaviPrakash, Aliasghar Mortazi, Fiona Tissavirasingham, Sarfaraz Hussein, Ulas Bagci, “Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks”, The British Journal of Radiology, 91:1089 (2018) | DOI
[7] C. Von See, M. Rücker, P. Schumann, F. Goetz, P. Wefstaedt, I. Nolte, N. Von der Hoeh, A. Meyer-Lindenberg, F. Tavassol, N. C. Gellrich, “Micro-computed tomography and histologic evaluation of the interface of hydrogel expander and underlying bone: influence of pressure distributors on bone resorption”, J. Oral Maxillofac Surg., 68:9 (2010), 2179–2184 | DOI
[8] V. P. Leonov, “Oshibki statisticheskogo analiza biomeditsinskikh dannykh”, Mezhdunarodnyi zhurnal meditsinskoi praktiki, 2007, no. 2, 19–35
[9] V. P. Leonov, “Klassifikatsiia oshibok primeneniia statistiki v otechestvennoi meditsine”, Materialy konferentsij “Systemnyj analiz v meditsine”, SAM 2007, Amurskij gosudarstvennyj universitet, Blagoveshchensk, 2007, 18–21
[10] A. A. Korneyev, A. N. Krichevets, “Conditions for Student's t-tests and Mann-Whitney U-test Application”, Psychological journal/Psikhologicheskii zhurnal, 32:1 (2011), 97–110
[11] A. M. Grjibovsky, “Analysis of three and more independent groups of quantitative data”, Human Ecology, 2008, no. 3, 50–58
[12] S. Glantz, “Primer of Biostatistics”, Comp. Sci., 1981 | DOI
[13] K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification”, IEEE Intern. Conf. on Computer Vision (ICCV), 2015 | DOI
[14] A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet classification with deep convolutional neural networks”, Proc. Advances in Neural Inf. Syst., 25:2 (2012) | DOI
[15] Liron Pantanowitz, Gabriela M. Quiroga-Garza, Lilach Bien, Ronen Heled, Daphna Laifenfeld, Chaim Linhart, Judith Sandbank, Anat Albrecht Shach, Varda Shalev, Manuela Vecsler, Pamela Michelow, Scott Hazelhurst, Rajiv Dhir, “An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study”, Lancet Digital Health, 2:8 (2020), e407–e416 | DOI
[16] Biao Jie, Daoqiang Zhang, Bo Cheng, Dinggang Shen, “Manifold regularized multitask feature learning for multimodality disease classification”, Human Brain Mapping, 36:2 (2015) | Zbl
[17] E. Wulczyn, D. Steiner, Zhaoyang Xu, A. Sadhwani, Hongwu Wang, I. Flament, Craig Mermel et al, “Deep learning-based survival prediction for multiple cancer types using histopathology images”, PLoS ONE, 2020, 1 | DOI
[18] Kunal Nagpal, Davis Foote, Fraser Tan, Yun Liu, Po-Hsuan Cameron Chen, David F. Steiner, Naren Manoj, Niels Olson, Jenny L. Smith, Arash Mohtashamian, Brandon Peterson et al, “Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer from Biopsy Specimens”, JAMA Oncol., 2020, no. 6 | DOI
[19] Kunal Nagpal, Davis Foote, Yun Liu, Po-Hsuan Cameron Chen, Ellery Wulczyn, Fraser Tan, Niels Olson, Jenny L. Smith, Arash Mohtashamian, James H. Wren et al, “Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer”, NPJ Digit Med., 2019, no. 2 | DOI
[20] G. Nir, D. Karimi, S. L. Goldenberg et al, “Comparison of artificial intelligence techniques to evaluate performance of a classifier for automatic grading of prostate cancer from digitized histopathologic images”, JAMA Netw Open., 2019, 2e190442
[21] W. Bulten, H. Pinckaers, H. van Boven et al, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study”, Lancet Oncol., 2020, no. 21, 233–241 | DOI
[22] G. Campanella, M. G. Hanna, L. Geneslaw et al, “Clinical-grade computational pathology using weakly supervised deep learning on whole slide images”, Nature Medicine, 2019, no. 25, 1301–1309 | DOI