Model for the evolution of the degree distributions of the vertices of social network graphs
Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a study of the structure of the network graph formed by friendships of the social network «VKontakte» between Russian cities, taking into account the gender and age structure of participants. This graph is interesting because its vertices are not points, but multidimensional objects corresponding to the amount of parameters the user is described by. In this case, we consider three-dimensional vertexes that correspond to gender, age, and region of residence. It turned out that the distribution of graph vertices by degrees strongly depends on which parameter the vertex corresponds to. Thus, the distribution of regional relationships without gender and age is close to uniform, and the distribution of age relationships without gender and region is triangular. As a result, the «urban» graph has a large fully connected core and sparse periphery, and the «age» graph has fully connected communities of 5–7 vertices that are weakly connected to each other. In this paper, model distributions of degrees of multidimensional vertices of a network graph are constructed and the dependence of the graph density on the rank of vertex parameters (large city, medium city, small city, popular age etc.) is studied. Various methods of vertex clustering and matrix evolution are also considered.
Keywords: network graph evolution, strongly connected component, multidimensional vertices, vertex degree distribution, clustering.
@article{MM_2021_33_9_a0,
     author = {A. A. Kislitsyn and Yu. N. Orlov},
     title = {Model for the evolution of the degree distributions of the vertices of social network graphs},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {33},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/}
}
TY  - JOUR
AU  - A. A. Kislitsyn
AU  - Yu. N. Orlov
TI  - Model for the evolution of the degree distributions of the vertices of social network graphs
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 21
VL  - 33
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/
LA  - ru
ID  - MM_2021_33_9_a0
ER  - 
%0 Journal Article
%A A. A. Kislitsyn
%A Yu. N. Orlov
%T Model for the evolution of the degree distributions of the vertices of social network graphs
%J Matematičeskoe modelirovanie
%D 2021
%P 3-21
%V 33
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/
%G ru
%F MM_2021_33_9_a0
A. A. Kislitsyn; Yu. N. Orlov. Model for the evolution of the degree distributions of the vertices of social network graphs. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/

[1] P. Erdosh, A. Renyi, V. T. Sos, “On a problem of graph theory”, Studia Sci. Mat. Hungaryu, 1 (1966), 215–235 | MR

[2] L. A. Barabasi, R. Albert, “Emergence of scaling in random networks”, Science, 286 (1999), 509–512 | DOI | MR | Zbl

[3] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Gharamani, “Kronecker graphs: an approach to modeling networks”, J. Machine Learning Research, 11 (2010), 985–1042 | MR | Zbl

[4] A. M. Raigorodskii, Modeli Interneta, Izd. Dom «Intellekt», Dolgoprudnyi, 2013, 64 pp.

[5] T. V. Batura, “Metody analiza kompiuternykh sotsialnykh setei”, Vestnik NGU, 10:4 (2012), 13–28

[6] M. Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, “Identifying modular flows on multi-layer networks reveals highly overlapping organization in interconnected systems”, Phys. Rev., X:5 (2015), 011027 | DOI

[7] N. F. Gusarova, Analiz sotsialnykh setei. Osnovnye poniatiia i metriki, ITMO, SPB, 2016, 67 pp.

[8] L. Danon, A. Díaz-Guilera, A. Arenas, “The effect of size heterogeneity on community identification in complex networks”, J. Stat. Mech. Theory Experiment, 11 (2006)

[9] E. N. Sawardecker, M. Sales-Pardo, L. A.N. Amaral, “Detection of node group membership in networks with group overlap”, Eur. Phys. J. B, 67:3 (2009), 277–284 | DOI

[10] A. Arenas, A. Díaz-Guilera, C. J. Pérez-Vicente, “Synchronization reveals topological scales in complex networks”, Phys. Rev. Lett., 96:11 (2006), 114102 | DOI | MR

[11] A. Lancichinetti, S. Fortunato, “Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities”, Phys. Rev., 80:1 (2009) | DOI

[12] G. K. Orman, V. Labatut, “The effect of network realism on community detection algorithms”, Conference Advances in Social Networks Analysis and Mining, 2010, 301–305

[13] Virtualnoe naselenie Rossii

[14] O. A. Chekmyshev, A. D. Iashunskii, “Izvlechenie i ispolzovanie dannykh iz elektronnykh sotsialnykh setei”, Preprinty IPM im. M.V. Keldysha, 2014, 62, 16 pp.

[15] N. Iu. Zamiatina, A. D. Iashunskii, “Virtualnaia geografiia virtualnogo naseleniia”, Monitoring obshchestvennogo mneniia: ekonomicheskie i sotsialnye peremeny, 2018, no. 1, 117–137

[16] A. A. Kislitsyn, Iu. N. Orlov, “Struktura silno sviaznoi komponenty setevogo grafa”, Preprinty IPM im. M.V. Keldysha, 2020, 027, 16 pp.