Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_9_a0, author = {A. A. Kislitsyn and Yu. N. Orlov}, title = {Model for the evolution of the degree distributions of the vertices of social network graphs}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--21}, publisher = {mathdoc}, volume = {33}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/} }
TY - JOUR AU - A. A. Kislitsyn AU - Yu. N. Orlov TI - Model for the evolution of the degree distributions of the vertices of social network graphs JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 21 VL - 33 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/ LA - ru ID - MM_2021_33_9_a0 ER -
A. A. Kislitsyn; Yu. N. Orlov. Model for the evolution of the degree distributions of the vertices of social network graphs. Matematičeskoe modelirovanie, Tome 33 (2021) no. 9, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2021_33_9_a0/
[1] P. Erdosh, A. Renyi, V. T. Sos, “On a problem of graph theory”, Studia Sci. Mat. Hungaryu, 1 (1966), 215–235 | MR
[2] L. A. Barabasi, R. Albert, “Emergence of scaling in random networks”, Science, 286 (1999), 509–512 | DOI | MR | Zbl
[3] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Gharamani, “Kronecker graphs: an approach to modeling networks”, J. Machine Learning Research, 11 (2010), 985–1042 | MR | Zbl
[4] A. M. Raigorodskii, Modeli Interneta, Izd. Dom «Intellekt», Dolgoprudnyi, 2013, 64 pp.
[5] T. V. Batura, “Metody analiza kompiuternykh sotsialnykh setei”, Vestnik NGU, 10:4 (2012), 13–28
[6] M. Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, “Identifying modular flows on multi-layer networks reveals highly overlapping organization in interconnected systems”, Phys. Rev., X:5 (2015), 011027 | DOI
[7] N. F. Gusarova, Analiz sotsialnykh setei. Osnovnye poniatiia i metriki, ITMO, SPB, 2016, 67 pp.
[8] L. Danon, A. Díaz-Guilera, A. Arenas, “The effect of size heterogeneity on community identification in complex networks”, J. Stat. Mech. Theory Experiment, 11 (2006)
[9] E. N. Sawardecker, M. Sales-Pardo, L. A.N. Amaral, “Detection of node group membership in networks with group overlap”, Eur. Phys. J. B, 67:3 (2009), 277–284 | DOI
[10] A. Arenas, A. Díaz-Guilera, C. J. Pérez-Vicente, “Synchronization reveals topological scales in complex networks”, Phys. Rev. Lett., 96:11 (2006), 114102 | DOI | MR
[11] A. Lancichinetti, S. Fortunato, “Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities”, Phys. Rev., 80:1 (2009) | DOI
[12] G. K. Orman, V. Labatut, “The effect of network realism on community detection algorithms”, Conference Advances in Social Networks Analysis and Mining, 2010, 301–305
[13] Virtualnoe naselenie Rossii
[14] O. A. Chekmyshev, A. D. Iashunskii, “Izvlechenie i ispolzovanie dannykh iz elektronnykh sotsialnykh setei”, Preprinty IPM im. M.V. Keldysha, 2014, 62, 16 pp.
[15] N. Iu. Zamiatina, A. D. Iashunskii, “Virtualnaia geografiia virtualnogo naseleniia”, Monitoring obshchestvennogo mneniia: ekonomicheskie i sotsialnye peremeny, 2018, no. 1, 117–137
[16] A. A. Kislitsyn, Iu. N. Orlov, “Struktura silno sviaznoi komponenty setevogo grafa”, Preprinty IPM im. M.V. Keldysha, 2020, 027, 16 pp.