Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_8_a6, author = {A. A. Shestakov}, title = {Comparison of hybrid {DDAD/ST} and {DDAD-TVDR} schemes for solving {2D} radiative heat transfer}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {114--126}, publisher = {mathdoc}, volume = {33}, number = {8}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_8_a6/} }
TY - JOUR AU - A. A. Shestakov TI - Comparison of hybrid DDAD/ST and DDAD-TVDR schemes for solving 2D radiative heat transfer JO - Matematičeskoe modelirovanie PY - 2021 SP - 114 EP - 126 VL - 33 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_8_a6/ LA - ru ID - MM_2021_33_8_a6 ER -
A. A. Shestakov. Comparison of hybrid DDAD/ST and DDAD-TVDR schemes for solving 2D radiative heat transfer. Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 114-126. http://geodesic.mathdoc.fr/item/MM_2021_33_8_a6/
[1] L. P. Bass, A. M. Woloshchenko, T. A. Germogenova, Metody diskretnykh ordinat, IPM im. M.V. Keldysha AN SSSR, M., 1986
[2] IU. I. Shokin, Metod differenzialnogo priblizheniia, Nauka, Novosibirsk, 1974
[3] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, Comp. Math. Math. Phys., 2:6 (1963), 1355–1365 | DOI | MR | Zbl
[4] W. A. Rhoades, W. W. Engle, “A new weighted-difference formulation for discrete ordinates calculations”, Trans. Am. Nucl. Soc., 27 (1977), 776–777
[5] A. A. Shestakov, “Chislennye effekty pri modelirovanii perenosa teplovogo izlucheniia”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2019, no. 1, 44–56 | Zbl
[6] B. Karlson, “Chislennoe reshenie zadachi kineticheskoi teorii neitronov”, Teoriya yadernykh reaktorov, Atomizdat, M., 1963, 243–258
[7] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[8] A. D. Gadzhiev, I. A. Kondakov, V. N. Pisarev, O. I. Starodumov, A. A. Shestakov, “Metod diskretnich ordinat s iskustvennoi dissipaziei (DDAD-skhema) dlia chislennogo resheniia uravneniia perenosa neitronov”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2003, no. 4, 13–24
[9] B. V. Rogov, V. N. Mikhailovskaya, “Monotone High-Accuracy Compact Running Scheme for Quasi-LinearHyperbolic Equations”, Math. Models Comp. Simul., 4 (2012), 375–384 | DOI | MR | Zbl
[10] A. I. Bochkov, V. A. Shumilin, “Schema tipa DSn-metoda resheniia dvumernogo uravneniia perenosa na chetyrekhugolnich prostranstvennich setkach”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2008, no. 4, 13–18
[11] A. D. Gadzhiev, V. V. Zaviyalov, A. A. Shestakov, “Primenenie TVD podkhoda k DSn metodu resheniia uravneniia perenosa teplovogo izlucheniia v osesimmetrichnoi RZ geometrii”, VANT, seriia «Matematicheskoe modelirovanie fizicheskikh protsessov», 2010, no. 2, 30–39
[12] A. A. Shestakov, “TVDR skhemi dlia resheniia sistemi uravnenii perenosa teplovogo izlucheniia”, VANT, seriia «Matemat. modelirovanie fizich. protsessov», 2019, no. 2, 17–36