Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed boundary method
Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 59-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a method for simulating the flow of a viscous compressible gas around a moving body on a simply connected unstructured mesh which is possible thanks to using the immersed boundary method, and the features of its application for computing the flow around a rotating propeller in two-dimensional formulation. An important part of the method is the adaptation of a moving mesh, that retains its topology, to the surface of the streamlined body. The position and shape of the body are set by the interpolation grid, which stores the distance to the body surface, and the normal to the surface. The technique is used to simulate the flow around a rotating propeller in a flow in twodimensional formulation. The shape of the propeller has areas of high curvature that requires a special approach when adapting to the boundaries. The paper presents the results of simulating the flow around a rotating propeller, as well as a few auxiliary problems considered to verify the developed method.
Keywords: computational fluid dynamics, unstructured mesh, immersed boundary method, mesh adaptation, moving mesh, rotating propeller.
Mots-clés : interpolation grid
@article{MM_2021_33_8_a3,
     author = {V. O. Tsvetkova and I. V. Abalakin and V. G. Bobkov and N. S. Zhdanova and T. K. Kozubskaya and L. N. Kudryavtseva},
     title = {Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed boundary method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--82},
     publisher = {mathdoc},
     volume = {33},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_8_a3/}
}
TY  - JOUR
AU  - V. O. Tsvetkova
AU  - I. V. Abalakin
AU  - V. G. Bobkov
AU  - N. S. Zhdanova
AU  - T. K. Kozubskaya
AU  - L. N. Kudryavtseva
TI  - Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed boundary method
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 59
EP  - 82
VL  - 33
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_8_a3/
LA  - ru
ID  - MM_2021_33_8_a3
ER  - 
%0 Journal Article
%A V. O. Tsvetkova
%A I. V. Abalakin
%A V. G. Bobkov
%A N. S. Zhdanova
%A T. K. Kozubskaya
%A L. N. Kudryavtseva
%T Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed boundary method
%J Matematičeskoe modelirovanie
%D 2021
%P 59-82
%V 33
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_8_a3/
%G ru
%F MM_2021_33_8_a3
V. O. Tsvetkova; I. V. Abalakin; V. G. Bobkov; N. S. Zhdanova; T. K. Kozubskaya; L. N. Kudryavtseva. Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed boundary method. Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 59-82. http://geodesic.mathdoc.fr/item/MM_2021_33_8_a3/

[1] J. Steger, F. C. Dougherty, J. A. Benek, “A chimera grid scheme”, Advances in Grid Generation, ASME FED-5, eds. K.N. Ghia, U. Chia, 1983, 59–69

[2] J. Z. Chai, X. L. Han, H. L. Che, “A Fast Grid Deformation Algorithm and Its Application”, 26th Congress of International Council of the Aeronautical Sciences (14–19 September 2008, Anchorage, Alaska, USA), 2008, Paper ICAS2008-P2.4

[3] Ph. Angot, C. H. Bruneau, P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows”, Numer. Math., 81:4 (1999), 497–520 | DOI | MR | Zbl

[4] I. Abalakin, T. Kozubskaya, N. Zhdanova, “Immersed boundary penalty method for com-pressible flows over moving obstacles”, Proceedings of ECCM 6/ECFD 7, eds. R. Owen, R. de Borst, J. Reese, C. Pearce, CIMNE, Barcelona, 2018, 3449–3458

[5] P. R. Spalart, S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows”, AIAA 30th Aerospace Sciences Meeting and Exhibit (6–9 January 1992, Reno, NV, USA), AIAA Paper 1992-0439

[6] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fluids, 81:6 (2016), 331–356 | DOI | MR

[7] V.A. Garanzha, “Barrier variational generation of quasi-isometric grids”, Comput. Math. Math. Phys., 40:11 (2000), 1617–1637 | MR | Zbl

[8] V. A. Garanzha, L. N. Kudryavtseva, S. V. Utyzhnikov, “Untangling and optimization of spatial meshes”, J. Comput. Appl. Math., 269 (2014), 24–41 | DOI | MR | Zbl

[9] V. A. Garanzha, L. N. Kudryavtseva, “Hyperelastic springback technique for construction of prismatic mesh layers”, Proc. Eng., 203 (2017), 401–413 | DOI

[10] I. E. Kaporin, O. Yu. Milyukova, “MPI+OpenMP implementation of the BiCGStab method with explicit preconditioning for the numerical solution of sparse linear systems”, Numerical methods and programming, 20 (2019), 516–527 | DOI

[11] J. B. Brandt, Small-scale propeller performance at low speeds, PhD dissertation, University of Illinois at Urbana-Champaign, 2005

[12] L. G. Loitsianskii, Mekhanika zhidkosti i gaza, 7-e izd., ispr., Drofa, M., 2003, 840 pp.