Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_8_a0, author = {E. N. Aristova and N. I. Karavaeva}, title = {The bicompact schemes for numerical solving of {Reed} problem using {\emph{HOLO}} algorithms}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--26}, publisher = {mathdoc}, volume = {33}, number = {8}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/} }
TY - JOUR AU - E. N. Aristova AU - N. I. Karavaeva TI - The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 26 VL - 33 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/ LA - ru ID - MM_2021_33_8_a0 ER -
E. N. Aristova; N. I. Karavaeva. The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms. Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/
[1] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI
[2] L. Chacón, G. Chen, D. A. Knoll, C. Newman, H. Park et al, “Multiscale high-order/low-order (HOLO) algorithms and applications”, J. Comp. Phys., 330, Feb. (2017), 21–45 | DOI | MR | Zbl
[3] W. A. Wiesequist, D. Y. Anistratov, J. E. Morel, “A cell-local finite difference discretization of the low order of the quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes”, J. Comp. Phys., 273 (2014), 343–357 | DOI | MR
[4] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 136–149 | DOI
[5] V. Ya. Gol'din, O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 340 pp.
[6] E. N. Aristova, “Simulation of radiation transport in channel on the basis of quasi-diffusion method”, Transport Theory and Statistical Physics, 37:05-07 (2008), 483–503 | DOI | MR | Zbl
[7] E. N. Aristova, D. F. Baydin, “Efficiency of Quasi-Diffusion Method for Calculating Critical Parameters of a Fast Reactor”, Math. Models Comp. Simul., 4:6 (2012), 568–573 | DOI | MR | Zbl
[8] E. N. Aristova, D. F. Baydin, “Implementation of the Quasi Diffusion Method for Calculating the Critical Parameters of a Fast Neutron Reactor in 3D Hexagonal Geometry”, Mathematical Models and Computer Simulations, 5:2 (2013), 145–155 | DOI | MR | Zbl
[9] B. V. Rogov, M. N. Mikhailovskaya, “Monotone Bicompact Schemes for a Linear Advection Equation”, Doklady Mathematics, 83:1 (2011), 121–125 | DOI | MR | Zbl
[10] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[11] B. V. Rogov, M. N. Mikhailovskaya, “Fourth-Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl
[12] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Mathematical Models and Computer Simulations, 1:1 (2009), 91–104 | DOI | MR | Zbl
[13] A. V. Chikitkin, B. V. Rogov, E. N. Aristova, “High-Order Accurate Bicompact Schemes for Solving the Multidimensional Inhomogeneous Transport Equation and Their Efficient Parallel Implementation”, Doklady Mathematics, 94:2 (2016), 516–521 | DOI | MR
[14] M. D. Bragin, B. V. Rogov, “Iterative Approximate Factorization for Difference Operators of High-Order Bicompact Schemes for Multidimensional Nonhomogeneous Hyperbolic Systems”, Doklady Mathematics, 95:2 (2017), 140–143 | DOI | MR | Zbl
[15] E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal Monotonization of a High-Order Accurate Bicompact Scheme for the Nonstationary Multidimensional Transport Equation”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 962–976 | DOI | MR | MR | Zbl
[16] E. N. Aristova, N. I. Karavaeva, “Bicompact Higt Order Schemes for Quasi-Diffusion Equations”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2018, 45, 28 pp. http://library.keldysh.ru/preprint.asp?id=2018-45
[17] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Math. Models and Comp. Simul., 5:3 (2013), 199–208 | DOI | MR | Zbl
[18] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry iavnyh skhem Runge-Kutty nevysokikh poriadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl
[19] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimal first- to sixth-order accurate Runge-Kutta schemes”, Comp. Mathematics and Mathematical Physics, 48:3 (2008), 395–405 | DOI | MR | Zbl
[20] W. H. Reed, “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46 (1971), 309–315 | DOI
[21] E. P. Sychugova, Discontinuous Finite Element Method for Solving the Transport Equation on an Unstructured Grid of Triangular Cells, Preprint Keldysh Institute of Applied Mathematics of RAS, 2013, 24 pp. http://library.keldysh.ru/preprint.asp?id=2013-85
[22] Kh. Grinspen, K. Kelber, D. Okrent (red.), Vychislitelnye metody v fizike reaktorov statei, Atomizdat, M., 1972
[23] R. L. Childs, W. A. Rhoades, Theoretical Basis of the Linear Nodal and Linear Characteristic Methods in the TORT Computer Code, ORNL/tm-12246, Oak Ridge National Laboratory, January 1993
[24] E. N. Aristova, N. I. Karavaeva, “Implementation of the bicompact scheme for HOLO algorithms for solving the transport equation”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2019, 021, 28 pp. https://library.keldysh.ru/preprint.asp?id=2019-21
[25] M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2019, 008, 26 pp. https://library.keldysh.ru/preprint.asp?id=2019-8