The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms
Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers bicompact schemes for HOLO algorithms for solving the nonstationary transport equation. To accelerate the convergence of scattering iterations, not only the solution of the transfer equation with respect to the distribution function of high order (HO) is used, but also the quasi-diffusion equation of low order (LO). For both systems of kinetic equations semi-discrete bicompact schemes with the fourth order of approximation in space are used. Integration over time can be carried out with any order of approximation. The diagonal-implicit third order approximation method is used in the work, its each stage can be reduced to the implicit Euler method. The discretization of quasi-diffusion equations is described in detail. Two variants for the boundary conditions for the LO part are considered: the classical one using fractional-linear functionals for the flux and radiation density ratio, and also by the radiation density value from the HO part of the system. It is shown that the boundary conditions for the LO system of equations of quasi-diffusion reduces the order of convergence of the scheme in time to the second. Setting the boundary conditions for solving the transport equation preserves the third order of convergence in time, but worsens the efficiency of iteration acceleration in HOLO algorithm.
Mots-clés : transport equation, quasi-diffusion method
Keywords: bicompact scheme, HOLO algorithms for transport equation solving, diagonally implicit Runge-Kutta method, Reed problem.
@article{MM_2021_33_8_a0,
     author = {E. N. Aristova and N. I. Karavaeva},
     title = {The bicompact schemes for numerical solving of {Reed} problem using {\emph{HOLO}} algorithms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {33},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - N. I. Karavaeva
TI  - The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 26
VL  - 33
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/
LA  - ru
ID  - MM_2021_33_8_a0
ER  - 
%0 Journal Article
%A E. N. Aristova
%A N. I. Karavaeva
%T The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms
%J Matematičeskoe modelirovanie
%D 2021
%P 3-26
%V 33
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/
%G ru
%F MM_2021_33_8_a0
E. N. Aristova; N. I. Karavaeva. The bicompact schemes for numerical solving of Reed problem using \emph{HOLO} algorithms. Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2021_33_8_a0/

[1] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[2] L. Chacón, G. Chen, D. A. Knoll, C. Newman, H. Park et al, “Multiscale high-order/low-order (HOLO) algorithms and applications”, J. Comp. Phys., 330, Feb. (2017), 21–45 | DOI | MR | Zbl

[3] W. A. Wiesequist, D. Y. Anistratov, J. E. Morel, “A cell-local finite difference discretization of the low order of the quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes”, J. Comp. Phys., 273 (2014), 343–357 | DOI | MR

[4] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 136–149 | DOI

[5] V. Ya. Gol'din, O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 340 pp.

[6] E. N. Aristova, “Simulation of radiation transport in channel on the basis of quasi-diffusion method”, Transport Theory and Statistical Physics, 37:05-07 (2008), 483–503 | DOI | MR | Zbl

[7] E. N. Aristova, D. F. Baydin, “Efficiency of Quasi-Diffusion Method for Calculating Critical Parameters of a Fast Reactor”, Math. Models Comp. Simul., 4:6 (2012), 568–573 | DOI | MR | Zbl

[8] E. N. Aristova, D. F. Baydin, “Implementation of the Quasi Diffusion Method for Calculating the Critical Parameters of a Fast Neutron Reactor in 3D Hexagonal Geometry”, Mathematical Models and Computer Simulations, 5:2 (2013), 145–155 | DOI | MR | Zbl

[9] B. V. Rogov, M. N. Mikhailovskaya, “Monotone Bicompact Schemes for a Linear Advection Equation”, Doklady Mathematics, 83:1 (2011), 121–125 | DOI | MR | Zbl

[10] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl

[11] B. V. Rogov, M. N. Mikhailovskaya, “Fourth-Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl

[12] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Mathematical Models and Computer Simulations, 1:1 (2009), 91–104 | DOI | MR | Zbl

[13] A. V. Chikitkin, B. V. Rogov, E. N. Aristova, “High-Order Accurate Bicompact Schemes for Solving the Multidimensional Inhomogeneous Transport Equation and Their Efficient Parallel Implementation”, Doklady Mathematics, 94:2 (2016), 516–521 | DOI | MR

[14] M. D. Bragin, B. V. Rogov, “Iterative Approximate Factorization for Difference Operators of High-Order Bicompact Schemes for Multidimensional Nonhomogeneous Hyperbolic Systems”, Doklady Mathematics, 95:2 (2017), 140–143 | DOI | MR | Zbl

[15] E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal Monotonization of a High-Order Accurate Bicompact Scheme for the Nonstationary Multidimensional Transport Equation”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 962–976 | DOI | MR | MR | Zbl

[16] E. N. Aristova, N. I. Karavaeva, “Bicompact Higt Order Schemes for Quasi-Diffusion Equations”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2018, 45, 28 pp. http://library.keldysh.ru/preprint.asp?id=2018-45

[17] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Math. Models and Comp. Simul., 5:3 (2013), 199–208 | DOI | MR | Zbl

[18] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry iavnyh skhem Runge-Kutty nevysokikh poriadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl

[19] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimal first- to sixth-order accurate Runge-Kutta schemes”, Comp. Mathematics and Mathematical Physics, 48:3 (2008), 395–405 | DOI | MR | Zbl

[20] W. H. Reed, “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46 (1971), 309–315 | DOI

[21] E. P. Sychugova, Discontinuous Finite Element Method for Solving the Transport Equation on an Unstructured Grid of Triangular Cells, Preprint Keldysh Institute of Applied Mathematics of RAS, 2013, 24 pp. http://library.keldysh.ru/preprint.asp?id=2013-85

[22] Kh. Grinspen, K. Kelber, D. Okrent (red.), Vychislitelnye metody v fizike reaktorov statei, Atomizdat, M., 1972

[23] R. L. Childs, W. A. Rhoades, Theoretical Basis of the Linear Nodal and Linear Characteristic Methods in the TORT Computer Code, ORNL/tm-12246, Oak Ridge National Laboratory, January 1993

[24] E. N. Aristova, N. I. Karavaeva, “Implementation of the bicompact scheme for HOLO algorithms for solving the transport equation”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2019, 021, 28 pp. https://library.keldysh.ru/preprint.asp?id=2019-21

[25] M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Preprint Keldysh Institute of Applied Mathematics of RAS, 2019, 008, 26 pp. https://library.keldysh.ru/preprint.asp?id=2019-8