Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_7_a8, author = {I. S. Bosnyakov and N. A. Klyuev}, title = {Computational efficiency of {ADER} and {RK} schemes for discontinuous {Galerkin} method in case of {1D} {Hopf} equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--120}, publisher = {mathdoc}, volume = {33}, number = {7}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/} }
TY - JOUR AU - I. S. Bosnyakov AU - N. A. Klyuev TI - Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation JO - Matematičeskoe modelirovanie PY - 2021 SP - 109 EP - 120 VL - 33 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/ LA - ru ID - MM_2021_33_7_a8 ER -
%0 Journal Article %A I. S. Bosnyakov %A N. A. Klyuev %T Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation %J Matematičeskoe modelirovanie %D 2021 %P 109-120 %V 33 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/ %G ru %F MM_2021_33_7_a8
I. S. Bosnyakov; N. A. Klyuev. Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 109-120. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/
[1] A. V. Wolkov, Ch. Hirsch, N. B. Petrovskaya, “Application of a higher order discontinuous Galerkin method in computational aerodynamics”, Math. Model. Nat Phenom., 6:3 (2011), 237–263 | DOI | MR | Zbl | Zbl
[2] C. Hirsch et al. (eds.), TILDA: Towards Industrial LES/DNS in Aeronautics, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, 2021 | MR
[3] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, F. Massa, “Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows”, J. Computers Fluids, 118 (2015), 305–320 | DOI | MR | Zbl
[4] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009, 738 | MR
[5] V. A. Titarev, E. F. Toro, “TVD fluxes for the high-order ADERS schemes”, J. of Scientific Computing, 24:3 (2005) | MR | Zbl
[6] I. S. Men'shov, “Increasing the order of approximation of Godunov-s scheme us-ing the generalized Riemann problem”, Comp. Math. Math Phys., 30:5 (1990), 54–65 | DOI | Zbl
[7] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh system uravnenii, Fizmatlit, M., 2001, 608 pp. | MR
[8] M. Dumbser, C. D. Munz, “Building blocks for arbitrary high order discontinuous Galerkin schemes”, J. of Scientific Computing, 27:1-3 (2006), 215–230 | DOI | MR | Zbl
[9] R. C. Moura, S. J. Sherwin, J. Peiró, “Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods”, J. Comput. Phys., 298 (2015), 659–710 | DOI | MR
[10] V. A. Titarev, E. F. Toro, “ADER: Arbitrary high order Godunov approach”, J. Sci. Comput., 17 (2002), 609–618 | DOI | MR | Zbl
[11] N. A. Klyuev, Issledovanie vychislitelnoi effectivnosti skhem integrirovaniia po vremeni dlia razryvnogo metoda Galyorkina, bakalavrskaia rabota, FAKT MFTI, Zhukovsky, 2020