Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 109-120

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers Discontinuous Galerkin schemes based on Legendre polynomials of degree $K=2, 3$. Schemes are written to solve the one-dimensional Hopf equation. Unsteady solution is acquired with ADER and Runge-Kutta algorithms. The high order of numerical approaches is affirmed. The ADER method computational efficiency is studied in comparison with traditional approach. Tests that are used are with an analytical solution (linear solution and running half-wave), and with Burgers turbulence. The result of this work can be used to speed up 3D DG-based algorithms.
Keywords: discontinuous Galerkin method, Hopf equation, efficiency, ADER, Runge–Kutta, high-order.
Mots-clés : burgulence
@article{MM_2021_33_7_a8,
     author = {I. S. Bosnyakov and N. A. Klyuev},
     title = {Computational efficiency of {ADER} and {RK} schemes for discontinuous {Galerkin} method in case of {1D} {Hopf} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/}
}
TY  - JOUR
AU  - I. S. Bosnyakov
AU  - N. A. Klyuev
TI  - Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 109
EP  - 120
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/
LA  - ru
ID  - MM_2021_33_7_a8
ER  - 
%0 Journal Article
%A I. S. Bosnyakov
%A N. A. Klyuev
%T Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation
%J Matematičeskoe modelirovanie
%D 2021
%P 109-120
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/
%G ru
%F MM_2021_33_7_a8
I. S. Bosnyakov; N. A. Klyuev. Computational efficiency of ADER and RK schemes for discontinuous Galerkin method in case of 1D Hopf equation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 109-120. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a8/