Application of a 2.5D harmonic balance method to a calculation of unsteady disturbances propagation through a duct of a turbofan
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 93-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of calculation of tone noise propagation through a duct of turbomachine, taking into account nonlinear effects, is presented. It is based on the decomposition of the solution on the set of circumferential modes and performing the calculations for the complex amplitudes of this modes using harmonic balance approach. The usage of the method can lead to an acceleration of simulations of noise propagation through inlets and nozzles of turbofans in the cases when the nonlinear effects cannot be neglected. The method is implemented in the CIAM 3DAS (3 Dimensional Acoustics Solver) in-house solver. It was verified on the problem of nonlinear interaction of circumferential modes in 2D cylindrical channel. The results of the calculation, performed using the method, showed satisfactory correspondence with the results of the time domain calculation.
Mots-clés : fan noise, tone noise
Keywords: computational aeroacoustic, frequency domain methods, harmonic balance method, 2.5D method of calculation.
@article{MM_2021_33_7_a7,
     author = {A. A. Rossikhin and V. I. Mileshin},
     title = {Application of a {2.5D} harmonic balance method to a calculation of unsteady disturbances propagation through a duct of a turbofan},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--108},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a7/}
}
TY  - JOUR
AU  - A. A. Rossikhin
AU  - V. I. Mileshin
TI  - Application of a 2.5D harmonic balance method to a calculation of unsteady disturbances propagation through a duct of a turbofan
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 93
EP  - 108
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a7/
LA  - ru
ID  - MM_2021_33_7_a7
ER  - 
%0 Journal Article
%A A. A. Rossikhin
%A V. I. Mileshin
%T Application of a 2.5D harmonic balance method to a calculation of unsteady disturbances propagation through a duct of a turbofan
%J Matematičeskoe modelirovanie
%D 2021
%P 93-108
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a7/
%G ru
%F MM_2021_33_7_a7
A. A. Rossikhin; V. I. Mileshin. Application of a 2.5D harmonic balance method to a calculation of unsteady disturbances propagation through a duct of a turbofan. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 93-108. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a7/

[1] E. Manoha, D. C. Mincu, AIAA/CEAS Aeroacoustics Conference, AIAA Paper No AIAA-2009-3293 (Miami, 2009)

[2] I. D. Roy, W. Eversman, H. D. Meyer, Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem, NASA-CR-204341, 1993

[3] X. Zhang, X. X. Chen, C. L. Morfey, P. A. Nelson, “Computation of Spinning Modal Radiation from an Unflanged Duct”, AIAA Journal, 42:9 (2004), 1795–1801 | DOI

[4] M. A. Nyukhtikov, A. A. Rossikhin, V. V. Sgadlev, I. A. Brailko, ASME Turbo Expo 2008, GT2008-51182 (Berlin, Germany June 9-13, 2008)

[5] M. A. Nyukhtikov, I. A. Brailko, V. I. Mileshin, S. V. Pankov, 2004 ASME Heat Transfer/Fluids engineering Summer Conference, HT-FED2004-56435 (Charlotte, North Carolina USA, July 11–15, 2004)

[6] M. McMullen, A. Jameson, J. Alonso, AIAA 40th Aerospace Sciences Meeting, AIAA paper 02-0120 (Reno, Nevada, January 2002)

[7] K. C. Hall, J. P. Thomas, W. S. Clark, “Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique”, AIAA Journal, 40:5 (2002) | DOI

[8] D. L. Hawkings, “Multiple Tone Generation by Transonic Compressors”, J. Sound Vibr., 17:2 (1971), 579–585 | DOI

[9] A. A. Rossikhin, S. V. Pankov, I. A. Brailko, V. I. Mileshin, ASME Turbo Expo 2014, GT2014-26354 (Düsseldorf, Germany, June 16-20, 2014)

[10] A. A. Rossikhin, S. V. Pankov, V. I. Mileshin, ASME Turbo Expo 2016, GT2016-57352 (Seoul, South Korea, June 13–17, 2016)

[11] A. A. Rossikhin, “Frequency-Domain Method for Multistage Turbomachine Tone Noise Calculation”, International Journal of Aeroacoustics, 16:6 (2017), 491–506 | DOI | MR

[12] A. K. Gopinath, E. van der Weide, J. Alonso, A. Jameson, K. Ekici, K. C. Hall, AIAA Aerospace Scientific Meeting and Exhibit, AIAA 2007-892 (Reno, Nevada, 8–11 January 2007)

[13] J. M. Tyler, T. G. Sofrin, “Axial Flow Compressor Noise Studies”, SAE Transactions, 70 (1962), 309–332

[14] C. K.W. Tam, J. C. Webb, “Dispersion-Relation-Preserving Schemes for Computational Acoustics”, Journal of Computational Physics, 107 (1993), 262–281 | DOI | MR | Zbl

[15] V. Allampalli, R. Hixon, M. Nallasamy, S. D. Sawyer, “High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics”, Journal of Computational Physics, 228 (2009), 3837–3850 | DOI | Zbl

[16] O. V. Vasilyev, “A General Class of Commutative Filters for LES in Complex Geometries”, Journal of Computational Physics, 146 (1998), 82–104 | DOI | MR | Zbl

[17] E. Gad, Simulation of RF integrated circuits, University of Ottawa, Ottawa, 2007