Numerical simulation of low frequency fluctuations in jet mixing layer of real scale wind tunnel and experience of actuators modelling for ones suppressing
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

High-resolution method for large eddy simulation (LES) is described. Classical task of real scale wind tunnel jet edge turbulent flow is formulated. Numerical methodology is described. Numerical data are presented. The idea and experience of jet actuators for jet edge low frequency fluctuations suppression are discussed.
Keywords: real scale wind tunnel, ring vortex, large eddy numerical method, total pressure fluctuations.
Mots-clés : turbulence
@article{MM_2021_33_7_a6,
     author = {S. M. Bosnyakov and I. S. Matyash and S. V. Mikhaylov},
     title = {Numerical simulation of low frequency fluctuations in jet mixing layer of real scale wind tunnel and experience of actuators modelling for ones suppressing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a6/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - I. S. Matyash
AU  - S. V. Mikhaylov
TI  - Numerical simulation of low frequency fluctuations in jet mixing layer of real scale wind tunnel and experience of actuators modelling for ones suppressing
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 79
EP  - 92
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a6/
LA  - ru
ID  - MM_2021_33_7_a6
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A I. S. Matyash
%A S. V. Mikhaylov
%T Numerical simulation of low frequency fluctuations in jet mixing layer of real scale wind tunnel and experience of actuators modelling for ones suppressing
%J Matematičeskoe modelirovanie
%D 2021
%P 79-92
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a6/
%G ru
%F MM_2021_33_7_a6
S. M. Bosnyakov; I. S. Matyash; S. V. Mikhaylov. Numerical simulation of low frequency fluctuations in jet mixing layer of real scale wind tunnel and experience of actuators modelling for ones suppressing. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 79-92. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a6/

[1] https://tsagi.ru/experimental_base/aerodinamicheskaya-truba-t-104/

[2] G. N. Abramovich, Prikladnaia gazovaia dinamika, Izd. Nauka, M., 1969

[3] S. P. Strelkov, G. A. Bendrikov, N. A. Smirnov, “Pulsatsii v aerodinamicheskikh trubakh i sposoby dempfirovaniia ikh”, Trudy TsAGI, 593, Izd. «Biuro novoi tekhniki», 1946, 57 pp.

[4] A. S. Ginevskii, E. V. Vlasov, R. K. Karavosov, Akusticheskoe upravlenie turbulentnymi struiami, Fizmatlit, M., 2001, 240 pp.

[5] E. V. Vlasov, A. S. Ginevskii, R. K. Karavosov, “Vliianie nachalnykh uslovii istecheniia na aerodinamicheskie i akusticheskie kharakteristiki turbulentnykh strui”, Mekhanika neodnorodnykh i turbulentnykh potokov, Nauka, M., 1989, 26–34

[6] L. J. S. Bradbury, A. H. Khadem, “The distortion of a jet by tabs”, J. Fluid Mech., 70:4 (1975), 801–813 | DOI

[7] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model”, Seventh Int. Conf. Comput. Fluid Dyn. (Big Island, Hawaii, 2012), ICCFD7-1902, 11 pp.

[8] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow. Elsevier Inc., 29:6 (2008), 1638–1649 | DOI

[9] P. R. Spalart, W. H. Jou, M. K. Strelets, S. R. Allmaras, “Comments on the feasibility of LES for wings, and on a Hybrid RANS/LES approach”, Processing of First AFOSR International Conference on DNS/LES, 1997, 137–147

[10] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows Flow”, Turbul. Combust., 95 (2015), 709–737 | DOI

[11] E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “Application of DDES and IDDES with shear layer adapted subgrid length-scale to separated flows”, J. Phys. Conf. Ser., 769 (2016), 012081 | DOI

[12] S. V. Mikhailov, “Printsipy postroeniia programmnogo koda dlia resheniia zadach aerodinamiki i aeroakustiki”, Matematicheskoe modelirovanie, 29:9 (2017), 49–61 | MR

[13] A. Travin, M. Shur, M. Strelets, P. R. Spalart, “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Advances in LES of Complex Flows, eds. Friedrich R., Rodi W., Springer, Netherlands, 2002, 239–254 | DOI

[14] G.-S. Jiang, C. W. Shu, “Efficient Implementation of Weighted ENO Schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[15] D. S. Balsara, C. W. Shu, “Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy”, J. Comput. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl

[16] A. Suresh, H. T. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, J. Comput. Phys., 136:1 (1997), 83–99 | DOI | MR | Zbl

[17] Rong Wang, Hui Feng, Raymond J. Spiteri, “Observations on the fifth-order WENO method with non-uniform meshes”, Applied Math. and Comput., 196:1 (2008), 433–447 | MR | Zbl

[18] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matematicheskii sbornik, 47(89):3 (1959), 271–306 | Zbl

[19] S. V. Bakhne, S. M. Bosniakov, S. V. Mikhailov, A. I. Troshin, “Sravnenie metodov approksimatsii gradientov v skhemakh semeistva WENO”, Materialy sedmoi vserossiiskoi konferentsii “Vychislitelnyi eksperiment v aeroakustike” (Svetlogorsk, Rossiia, 2018), 43