Comparison of convective terms approximations in DES family methods
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 47-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The central-difference and upwind schemes for the convective terms of the gas dynamics equations are considered, as well as their interaction, carried out using various transition and weight functions. Testing was carried out on a model problem of the decay of homogeneous isotropic turbulence. Methods of large eddies with closing turbulence models were considered. The question of the consistency of the initial field with respect to the parameters of the turbulence model was investigated. The optimal values of the constants of the closing turbulence model were determined, allowing, in the case of a central-difference approximation, to maintain a low level of dissipation of the kinetic energy of turbulence in the high-frequency region of its spectrum. The weighting factor of the upwind scheme was determined, starting from which the influence of the mentioned constants becomes insignificant.
Keywords: numerical dissipation, central differences, upwind schemes
Mots-clés : DES.
@article{MM_2021_33_7_a4,
     author = {S. Bakhne},
     title = {Comparison of convective terms approximations in {DES} family methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a4/}
}
TY  - JOUR
AU  - S. Bakhne
TI  - Comparison of convective terms approximations in DES family methods
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 47
EP  - 62
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a4/
LA  - ru
ID  - MM_2021_33_7_a4
ER  - 
%0 Journal Article
%A S. Bakhne
%T Comparison of convective terms approximations in DES family methods
%J Matematičeskoe modelirovanie
%D 2021
%P 47-62
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a4/
%G ru
%F MM_2021_33_7_a4
S. Bakhne. Comparison of convective terms approximations in DES family methods. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 47-62. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a4/

[1] A.V. Garbaruk et al., Sovremenye podkhody k modelirovaniiu turbulentnosti, Izd-vo Politekhn. Un-ta, SPb., 2016, 234

[2] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical Computational Fluid Dynamics, 20 (2006), 181–195 | DOI | Zbl

[3] A. Travin, M. Shur, M. Strelets, P. R. Spalart, “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Fluid Mech. Appl., 65 (2004), 239–254

[4] F. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA-Journal, 32:8 (1994), 269–289 | DOI

[5] S. Bakhne, S. M. Bosniakov, S. V. Mikhailov, A. I. Troshin, “Comparison of gradient approximation methods in schemes designed for scale-resolving simulations”, Mathematical Models and Computer Simulations, 12:3 (2020), 357–367 | DOI | MR | Zbl

[6] S. V. Mikhailov, “Obiektno-orientirovannii podkhod k sozdaniiu effectivnykh programm, realizuiushchikh parallelnye algoritmy rascheta”, Trudy TsAGI, 2671, 2007, 86–108

[7] S. V. Mikhaylov, V. V. Vlasenko, “Programma ZEUS dlia rascheta nestatsionarnykh techenii v ramkah podkhodov RANS i LES”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov” (pos. Volodarskogo, 2009)

[8] S. M. Bosniakov, “Kontseptsiia programmnogo produkta EWT-TsAGI i osnovnye etapy ee razvitiia”, Trudy TsAGI, 2671, 2007, 3–19

[9] R. Zhang, M. Zhang, C. W. Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Comm. Comput. Physics, 9:3 (2011), 807–827 | DOI | MR | Zbl

[10] A. Suresh, H. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, Journal of Computational Physics, 136:1 (1997), 83–99 | DOI | MR | Zbl

[11] B. van Leer, W. T. Lee, P. L. Roe, K. G. Powell, C. H. Tai, “Design of Optimally Smoothing Multistage Schemes for the Euler Equations”, Communications in Applied Numerical Methods, 8:10 (1992), 761–769 | DOI | Zbl

[12] M. S. Gritskevich, A. V. Garbaruk, J. Schütze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turb. Combust., 88:3 (2012), 431–449 | DOI | Zbl

[13] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows”, Flow Turbulence Combust, 95, Springer, 2015, 709–737 | DOI

[14] B. Etkin, Dynamics of atmospheric flight, John Wiley Sons, Inc., New York, 1972

[15] D. A. Liubimov, Analiz turbulentnykh struinykh I otryvnykh techenii v elementakh TRD kombinirovannymi RANS/LES-metodami visokogo razresheniia, dissertatsiia, FGUP “TsIAM”, M., 2014

[16] E. K. Guseva, Analiz i otsenka effektivnosti metodov, obespechivaiushchikh uskorenie perekhoda k chislenno razreshaemoi turbulentnosti pri ispolzovanii nezonnykh gibridnykh podkhodov k raschetu turbulentnykh techenii, dissertatsiia, SPBGPU Petra Velikogo, Sanct-Peterburg, 2017

[17] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids”, Math. Computation, 51:184 (1988), 699–706 | DOI | MR | Zbl

[18] J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, M. Leschziner, “Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions”, J. Fluid Mech., 526 (2005), 19–66 | DOI | MR | Zbl

[19] Ch. Rapp, Experimentelle Studie der turbulenten Stroemung ueber periodische Huegel, Dissertation, Technische Universitaet Muenchen, 2009 | Zbl

[20] L. Temmerman, M. A. Leschziner, C. P. Mellen, J. Fröhlich, “Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions”, International Journal of Heat and Fluid Flow, 24:2 (2003), 157–180 | DOI