Simulation of impact of the wakes of emergency rescue unit’s nozzles on the surface of a manned spacecraft
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results are presented of numerical simulations of impact of the wakes of emergency rescue unit’s nozzles on the surface of a manned spacecraft. The computations are carried out in the framework of a two-stage RANS-LES methodology proposed and validated by the authors earlier. Within this methodology, the wall-modeled LES (WMLES) is represented by a well-known scale-resolving approach IDDES. In the present work, this methodology is enhanced by including in the WMLES-subdomain the first row of the emergency rescue unit's nozzles and by covering the entire ($360^\circ$) azimuthal domain. This allows increasing accuracy of the simulations due to a more correct representation of the wakes of these nozzles and also addressing the effect of non-zero angle of attack. Analysis is performed of the effect of the flight Mach number on the amplitude and spectral characteristics of the pressure fluctuations on the spacecraft surface, including their alteration at the sonic barrier. Other than that, at the transonic Mach number value of $\mathrm{M}_\infty = 0.95$, the effects are analyzed of a non-zero angle of attack and of relative azimuthal location of the first and the second rows of nozzles of the recue unit.
@article{MM_2021_33_7_a2,
     author = {A. V. Garbaruk and M. Kh. Strelets and M. L. Shur and A. A. Dyadkin and S. P. Rybak and M. V. Mikhailov},
     title = {Simulation of impact of the wakes of emergency rescue unit{\textquoteright}s nozzles on the surface of a manned spacecraft},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a2/}
}
TY  - JOUR
AU  - A. V. Garbaruk
AU  - M. Kh. Strelets
AU  - M. L. Shur
AU  - A. A. Dyadkin
AU  - S. P. Rybak
AU  - M. V. Mikhailov
TI  - Simulation of impact of the wakes of emergency rescue unit’s nozzles on the surface of a manned spacecraft
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 18
EP  - 34
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a2/
LA  - ru
ID  - MM_2021_33_7_a2
ER  - 
%0 Journal Article
%A A. V. Garbaruk
%A M. Kh. Strelets
%A M. L. Shur
%A A. A. Dyadkin
%A S. P. Rybak
%A M. V. Mikhailov
%T Simulation of impact of the wakes of emergency rescue unit’s nozzles on the surface of a manned spacecraft
%J Matematičeskoe modelirovanie
%D 2021
%P 18-34
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a2/
%G ru
%F MM_2021_33_7_a2
A. V. Garbaruk; M. Kh. Strelets; M. L. Shur; A. A. Dyadkin; S. P. Rybak; M. V. Mikhailov. Simulation of impact of the wakes of emergency rescue unit’s nozzles on the surface of a manned spacecraft. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 18-34. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a2/

[1] A. A. Diadkin, S. P. Rybak, G. A. Trashkov, A. V. Garbaruk, M. Kh. Strelets, M. L. Shur, S. M. Drozdov, E. P. Stoliarov, “Raschetno-eksperimentalnye issledovaniia pulsatsii davleniia na poverkhnosti kosmicheskoi golovnoi chasti s pilotiruemym transportnym korablem na uchastke vyvedeniia”, Kosmicheskaia tekhn. i tekhnol., 24:1 (2019), 5–22

[2] M. Shur, P. R. Spalart, M. Strelets, A. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat and Fluid Flow, 29 (2008), 1638–1649 | DOI

[3] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems”, Flow, Turbulence and Combustion, 93 (2014), 63–92 | DOI

[4] E. C. Joubert, T. M. Harms, G. Venter, “Computational simulation of the turbulent flow around a surface mounted rectangular prism”, Journal of Wind Engineering and Industrial Aerodynamics, 142 (2015), 173–187 | DOI

[5] A. Probst, D. Schwamborn, A. Garbaruk, E. Guseva, M. Shur, M. Strelets, A. Travin, “Evaluation of grey area mitigation tools within zonal and non-zonal RANS-LES approaches in flows with pressure induced separation”, Int. J. Heat and Fluid Flow, 68 (2017), 237–247 | DOI

[6] J. Su, H. Lei, D. Zhou, Z. Han, Y. Bao, H. Zhu, L. Zhou, “Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation”, Renewable Energy, 141 (2019), 559–569 | DOI

[7] E. Guilmineau, G. B. Deng, A. Leroyer, P. Queutey, M. Visonneau, J. Wackers, “Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body”, Computers and Fluids, 176 (2018), 302–319 | DOI | MR | Zbl

[8] M. Shur, M. Strelets, A. Travin, P. R. Spalart, T. Suzuki, “Unsteady simulations of a fan/out-let-guide-vane system: Aerodynamics and turbulence”, AIAA J., 56 (2018), 2283–2297 | DOI

[9] F. R. Menter, Zonal two-equation $k$-$\omega$ turbulence models for aerodynamic flows, AIAA Paper, AIAA-1993-2906, 1993

[10] A. S. Stabnikov, A. V. Garbaruk, “Testing of modified curvature-rotation correction for $k$-$\omega$ SST model”, Journal of Physics: Conference Series, 769 (2016), 012087 | DOI

[11] M. Shur, M. Strelets, A. Travin, “High-order implicit multi-block Navier-Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulence”, 7th Symposium on overset composite grids and solution technology (Huntington Beach, CA, 2004) https://cfd.spbstu.ru//agarbaruk/doc/NTS_code.pdf

[12] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors and Difference schemes”, Journal of Computational Physics, 46 (1981), 357–378 | DOI | MR