Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_7_a1, author = {S. A. Isaev and J.-J. Miau and D. V. Nikushchenko and A. G. Sudakov and A. E. Usachov}, title = {Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {5--17}, publisher = {mathdoc}, volume = {33}, number = {7}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/} }
TY - JOUR AU - S. A. Isaev AU - J.-J. Miau AU - D. V. Nikushchenko AU - A. G. Sudakov AU - A. E. Usachov TI - Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect JO - Matematičeskoe modelirovanie PY - 2021 SP - 5 EP - 17 VL - 33 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/ LA - ru ID - MM_2021_33_7_a1 ER -
%0 Journal Article %A S. A. Isaev %A J.-J. Miau %A D. V. Nikushchenko %A A. G. Sudakov %A A. E. Usachov %T Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect %J Matematičeskoe modelirovanie %D 2021 %P 5-17 %V 33 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/ %G ru %F MM_2021_33_7_a1
S. A. Isaev; J.-J. Miau; D. V. Nikushchenko; A. G. Sudakov; A. E. Usachov. Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 5-17. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/
[1] S. V. Guverniuk, S. A. Isaev, O. O. Egorychev, O. I. Poddaeva, N. V. Kornev, A. E. Usachov, “Vychislitelnaia aerodinamika stroitelnykh sooruzhenii. Zadachi i metody”, Nauchno-tekhnicheskii zhurnal. Vestnik MGSU, 2:2 (2011), 113–119
[2] S. V. Guverniuk, O. O. Egorychev, S. A. Isaev, N. V. Kornev, O. I. Poddaeva, “Chislennoe i fizicheskoe modelirovanie vetrovogo vozdeistviia na gruppu vysotnykh zdanii”, Nauchno-tekhnicheskii zhurnal. Vestnik MGSU, 1:3 (2011), 185–191
[3] S. A. Isaev, N. I. Vatin, P. A. Baranov, A. G. Sudakov, A. E. Usachov, V. V. Egorov, “Razrabotka i verifikatsiia mnogoblochnykh vychislitelnykh tekhnologii dlia resheniia nestatsionarnykh zadach stroitelnoi aerodinamiki vysotnykh zdanii v ramkakh podkhoda URANS”, Inzhenerno-stroitelnyi zhurnal, 2013, no. 1, 103–109
[4] S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. A. Tereshkin, A. E. Usachov, “Simulation of the wind effect on an ensemble of high-rise buildings by means of multiblock computational technologies”, J. of Eng. Physics and Thermophysics, 87:1 (2014), 112–123 | DOI
[5] S. A. Isaev, V. A. Lebiga, J. J. Miau, V. N. Zinovyev, “Modeling vortex structures control at streamlining of high-rise buildings in the coastal area “sea–land””, AIP Conf. Proc., 2027 (2018), 030167, 1–5
[6] N. Vatin, S. Isaev, S. Guvernyik, V. Gagarin, B. Basok, J. Zhukova, “Architectural building aerodynamics of tall structures with the bleeding effect and wind energy selection”, Proc. Int. Conf. Innovative Materials, Structures and Technolog., RTU Press, Riga, 2014, 193–197 | DOI
[7] S. A. Isaev, N. I. Vatin, S. V. Guvernyuk, V. G. Gagarin, B. I. Basok, J. V. Zhukova, “Drag Reduction of Energy Efficient Buildings and Wind Energy Extraction Due to Bleeding Effect”, High Temperature, 53:6 (2015), 874–877 | DOI
[8] P. A. Baranov, V. L. Zhdanov, S. A. Isaev, V. B. Kharchenko, A. E. Usachov, “Numerical simulation of the unsteady laminar flow past a circular cylinder with a perforated sheath”, Fluid Dynamics, 38:2 (2003), 203–213 | DOI | Zbl
[9] S. A. Isaev, V. L. Zhdanov, H. J. Niemann, “Numerical study of the bleeding effect on the aerodynamic characteristics of a circular cylinder”, J. Wind Eng. Ind. Aerodyn., 90:11 (2002), 1217–1226 | DOI
[10] S. A. Isaev, A. G. Sudakov, Yu. V. Zhukova, A. E. Usachov, “Modeling of reduction in the drag and cessation of the action of an alternating transverse force on a circular cylinder due to the throttling effect”, J. of Engineering Physics and Thermophysics, 87:4 (2014), 936–939 | DOI
[11] T. Igarashi, N. Terachi, “Drag reduction of flat plate normal to air stream by flow control using a rod”, Expanded Abstracts of 4th Int. Coll. on Bluff Body Aerodynamics Application (Bochum, 2000), Ruhr University, Bochum, 635–638
[12] S. A. Isaev, P. A. Baranov, A. E. Usachov, Mnogoblochnye vychislitelnye tekhnologii v pakete VP2/3 po aerotermodinamike, LAP LAMBERT Acad. Publ., Saarbriuken, 2013, 316 pp.
[13] F. R. Menter, Zonal two equation $k$-$\omega$ turbulence models for aerodynamicows, AIAA Paper No 93-2906, 1993
[14] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Turbulence, Heat and Mass Transfer, 4, eds. K. Hanjalic, Y. Nogano, M. Tummers, Begell House Inc., 2003
[15] M. Leschziner, W. Rodi, “Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations”, Trans. ASME. J. Fluids Eng., 103 (1981), 352–365 | DOI
[16] V. K. Bobyshev, S. A. Isaev, “Numerical study of the effects of the current turbulence on the flow along cylinder with a front disk situated”, J. Eng. Physics, 58:4 (1990), 556–572
[17] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flow”, Comp. Meth. Appl. Mech. Eng., 3:2 (1974), 269–289 | DOI | Zbl
[18] S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, V. B. Kharchenko, “Correction of the shear-stress-transfer model with account for the curvature of streamlines in calculating separated flows of an incompressible viscous fluid”, J. Eng. Phys. Thermophys., 87:4 (2014), 1002–1015 | DOI
[19] S. A. Isaev, “Experience of application of SST-model-2003 with correction on streamline curvature according to Rodi-Leshziner-Isaev approach for (U)RANS calculations of separated and vortex sub- and supersonic flows”, AIP Conf. Proc., 2027 (2018), 020015 | DOI
[20] S. Isaev, P. Baranov, I. Popov, A. Sudakov, A. Usachov, S. Guvernyuk, A. Sinyavin, A. Chulyunin, A. Mazo, D. Demidov, A. Dekterev, A. Gavrilov, A. Shebelev, “Numerical simulation and experiments on turbulent air flow around the semi-circular profile at zero angle of attack and moderate Reynolds number”, Computers and Fluids, 188:30 (2019), 1–17 | DOI | MR | Zbl
[21] S. Isaev, P. Baranov, I. Popov, A. Sudakov, A. Usachov, S. Guvernyuk, A. Sinyavin, A. Chulyunin, A. Mazo, D. Demidov, “Ensuring safe descend of reusable rocket stages numerical simulation and experiments on subsonic turbulent air flow around a semi-circular cylinder at zero angle of attack and moderate Reynolds number”, Acta Astr., 150 (2018), 117–136 | DOI
[22] P. A. Baranov, S. V. Guvernyuk, S. A. Isaev, A. G. Soudakov, A. E. Usachov, “Simulation of periodical structures in the airfoil wake”, TsAGI Science Journal, 45:3–4 (2014), 273–292 | DOI
[23] B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comp. Meth. Appl. Mech. Eng., 19:1 (1979), 59–98 | DOI | Zbl
[24] B. Van Leer, “Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method”, J. Comp. Phys., 32 (1979), 101–136 | DOI | Zbl
[25] A. Pascau, N. Garcia, “Consistency of SIMPLEC scheme in collocated grids”, V European Conf. on Comp. Fluid Dynamics ECCOMAS CFD 2010 (Lisbon, Portugal, 2010), 12 pp.
[26] R. Peyret, T. D. Taylor, Computational methods for fluid flow, Springer-Verlag New York Inc., 1983, 358 pp. | MR | Zbl
[27] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003, 567 pp. | MR | Zbl
[28] D. Demidov, AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method, http://amgcl.readthedocs.org/