Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect
Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Original multi-block computational technologies based on the use of different-scale overlapping grids and implemented in the VP2/3 package are used to numerically simulate the effect of wind shear on a two-dimensional turbulent flow around an energy-efficient high-rise structure. The structure is a circular cylinder in a perforated casing. The throttling effect associated with the bypassing of air from the braking zone in front of the body to the area of the near wake behind it stabilizes the flow around the body and reduces its drag. The wind shear is simulated by a vortex street behind the transverse smallsize square cylinder placed in front of the body. As a test, we consider Igarashi's experiment on the interaction of a vortex street behind a small-diameter cylinder with a transverse plate in a uniform air flow.
Keywords: wind shear, cylinder with perforated casing, plate, vortex street, multi-block computing technologies.
Mots-clés : turbulence
@article{MM_2021_33_7_a1,
     author = {S. A. Isaev and J.-J. Miau and D. V. Nikushchenko and A. G. Sudakov and A. E. Usachov},
     title = {Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {33},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/}
}
TY  - JOUR
AU  - S. A. Isaev
AU  - J.-J. Miau
AU  - D. V. Nikushchenko
AU  - A. G. Sudakov
AU  - A. E. Usachov
TI  - Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 5
EP  - 17
VL  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/
LA  - ru
ID  - MM_2021_33_7_a1
ER  - 
%0 Journal Article
%A S. A. Isaev
%A J.-J. Miau
%A D. V. Nikushchenko
%A A. G. Sudakov
%A A. E. Usachov
%T Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect
%J Matematičeskoe modelirovanie
%D 2021
%P 5-17
%V 33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/
%G ru
%F MM_2021_33_7_a1
S. A. Isaev; J.-J. Miau; D. V. Nikushchenko; A. G. Sudakov; A. E. Usachov. Modeling the influence of wind shear on reducing the drag of an energy-efficient high-level structure using a throttle effect. Matematičeskoe modelirovanie, Tome 33 (2021) no. 7, pp. 5-17. http://geodesic.mathdoc.fr/item/MM_2021_33_7_a1/

[1] S. V. Guverniuk, S. A. Isaev, O. O. Egorychev, O. I. Poddaeva, N. V. Kornev, A. E. Usachov, “Vychislitelnaia aerodinamika stroitelnykh sooruzhenii. Zadachi i metody”, Nauchno-tekhnicheskii zhurnal. Vestnik MGSU, 2:2 (2011), 113–119

[2] S. V. Guverniuk, O. O. Egorychev, S. A. Isaev, N. V. Kornev, O. I. Poddaeva, “Chislennoe i fizicheskoe modelirovanie vetrovogo vozdeistviia na gruppu vysotnykh zdanii”, Nauchno-tekhnicheskii zhurnal. Vestnik MGSU, 1:3 (2011), 185–191

[3] S. A. Isaev, N. I. Vatin, P. A. Baranov, A. G. Sudakov, A. E. Usachov, V. V. Egorov, “Razrabotka i verifikatsiia mnogoblochnykh vychislitelnykh tekhnologii dlia resheniia nestatsionarnykh zadach stroitelnoi aerodinamiki vysotnykh zdanii v ramkakh podkhoda URANS”, Inzhenerno-stroitelnyi zhurnal, 2013, no. 1, 103–109

[4] S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. A. Tereshkin, A. E. Usachov, “Simulation of the wind effect on an ensemble of high-rise buildings by means of multiblock computational technologies”, J. of Eng. Physics and Thermophysics, 87:1 (2014), 112–123 | DOI

[5] S. A. Isaev, V. A. Lebiga, J. J. Miau, V. N. Zinovyev, “Modeling vortex structures control at streamlining of high-rise buildings in the coastal area “sea–land””, AIP Conf. Proc., 2027 (2018), 030167, 1–5

[6] N. Vatin, S. Isaev, S. Guvernyik, V. Gagarin, B. Basok, J. Zhukova, “Architectural building aerodynamics of tall structures with the bleeding effect and wind energy selection”, Proc. Int. Conf. Innovative Materials, Structures and Technolog., RTU Press, Riga, 2014, 193–197 | DOI

[7] S. A. Isaev, N. I. Vatin, S. V. Guvernyuk, V. G. Gagarin, B. I. Basok, J. V. Zhukova, “Drag Reduction of Energy Efficient Buildings and Wind Energy Extraction Due to Bleeding Effect”, High Temperature, 53:6 (2015), 874–877 | DOI

[8] P. A. Baranov, V. L. Zhdanov, S. A. Isaev, V. B. Kharchenko, A. E. Usachov, “Numerical simulation of the unsteady laminar flow past a circular cylinder with a perforated sheath”, Fluid Dynamics, 38:2 (2003), 203–213 | DOI | Zbl

[9] S. A. Isaev, V. L. Zhdanov, H. J. Niemann, “Numerical study of the bleeding effect on the aerodynamic characteristics of a circular cylinder”, J. Wind Eng. Ind. Aerodyn., 90:11 (2002), 1217–1226 | DOI

[10] S. A. Isaev, A. G. Sudakov, Yu. V. Zhukova, A. E. Usachov, “Modeling of reduction in the drag and cessation of the action of an alternating transverse force on a circular cylinder due to the throttling effect”, J. of Engineering Physics and Thermophysics, 87:4 (2014), 936–939 | DOI

[11] T. Igarashi, N. Terachi, “Drag reduction of flat plate normal to air stream by flow control using a rod”, Expanded Abstracts of 4th Int. Coll. on Bluff Body Aerodynamics Application (Bochum, 2000), Ruhr University, Bochum, 635–638

[12] S. A. Isaev, P. A. Baranov, A. E. Usachov, Mnogoblochnye vychislitelnye tekhnologii v pakete VP2/3 po aerotermodinamike, LAP LAMBERT Acad. Publ., Saarbriuken, 2013, 316 pp.

[13] F. R. Menter, Zonal two equation $k$-$\omega$ turbulence models for aerodynamicows, AIAA Paper No 93-2906, 1993

[14] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Turbulence, Heat and Mass Transfer, 4, eds. K. Hanjalic, Y. Nogano, M. Tummers, Begell House Inc., 2003

[15] M. Leschziner, W. Rodi, “Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations”, Trans. ASME. J. Fluids Eng., 103 (1981), 352–365 | DOI

[16] V. K. Bobyshev, S. A. Isaev, “Numerical study of the effects of the current turbulence on the flow along cylinder with a front disk situated”, J. Eng. Physics, 58:4 (1990), 556–572

[17] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flow”, Comp. Meth. Appl. Mech. Eng., 3:2 (1974), 269–289 | DOI | Zbl

[18] S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, V. B. Kharchenko, “Correction of the shear-stress-transfer model with account for the curvature of streamlines in calculating separated flows of an incompressible viscous fluid”, J. Eng. Phys. Thermophys., 87:4 (2014), 1002–1015 | DOI

[19] S. A. Isaev, “Experience of application of SST-model-2003 with correction on streamline curvature according to Rodi-Leshziner-Isaev approach for (U)RANS calculations of separated and vortex sub- and supersonic flows”, AIP Conf. Proc., 2027 (2018), 020015 | DOI

[20] S. Isaev, P. Baranov, I. Popov, A. Sudakov, A. Usachov, S. Guvernyuk, A. Sinyavin, A. Chulyunin, A. Mazo, D. Demidov, A. Dekterev, A. Gavrilov, A. Shebelev, “Numerical simulation and experiments on turbulent air flow around the semi-circular profile at zero angle of attack and moderate Reynolds number”, Computers and Fluids, 188:30 (2019), 1–17 | DOI | MR | Zbl

[21] S. Isaev, P. Baranov, I. Popov, A. Sudakov, A. Usachov, S. Guvernyuk, A. Sinyavin, A. Chulyunin, A. Mazo, D. Demidov, “Ensuring safe descend of reusable rocket stages numerical simulation and experiments on subsonic turbulent air flow around a semi-circular cylinder at zero angle of attack and moderate Reynolds number”, Acta Astr., 150 (2018), 117–136 | DOI

[22] P. A. Baranov, S. V. Guvernyuk, S. A. Isaev, A. G. Soudakov, A. E. Usachov, “Simulation of periodical structures in the airfoil wake”, TsAGI Science Journal, 45:3–4 (2014), 273–292 | DOI

[23] B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comp. Meth. Appl. Mech. Eng., 19:1 (1979), 59–98 | DOI | Zbl

[24] B. Van Leer, “Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method”, J. Comp. Phys., 32 (1979), 101–136 | DOI | Zbl

[25] A. Pascau, N. Garcia, “Consistency of SIMPLEC scheme in collocated grids”, V European Conf. on Comp. Fluid Dynamics ECCOMAS CFD 2010 (Lisbon, Portugal, 2010), 12 pp.

[26] R. Peyret, T. D. Taylor, Computational methods for fluid flow, Springer-Verlag New York Inc., 1983, 358 pp. | MR | Zbl

[27] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003, 567 pp. | MR | Zbl

[28] D. Demidov, AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method, http://amgcl.readthedocs.org/