Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 88-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-linear boundary value problem describing performance of biochemical reactor allowing for mass transfer relaxation is considered. Logistical law is accepted as a source of substance. Non-trivial solutions under homogenous boundary conditions are found. Limiting form model for relaxation equations is taken as a basis for analysis. Change in reactor performance mode is analyzed upon availability of two solutions to the model equations.
Keywords: reactor, stability, logistical law, Peclet number, convective transfer.
@article{MM_2021_33_6_a6,
     author = {A. I. Moshinskij},
     title = {Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {88--106},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/}
}
TY  - JOUR
AU  - A. I. Moshinskij
TI  - Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 88
EP  - 106
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/
LA  - ru
ID  - MM_2021_33_6_a6
ER  - 
%0 Journal Article
%A A. I. Moshinskij
%T Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
%J Matematičeskoe modelirovanie
%D 2021
%P 88-106
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/
%G ru
%F MM_2021_33_6_a6
A. I. Moshinskij. Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 88-106. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/