Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 88-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-linear boundary value problem describing performance of biochemical reactor allowing for mass transfer relaxation is considered. Logistical law is accepted as a source of substance. Non-trivial solutions under homogenous boundary conditions are found. Limiting form model for relaxation equations is taken as a basis for analysis. Change in reactor performance mode is analyzed upon availability of two solutions to the model equations.
Keywords: reactor, stability, logistical law, Peclet number, convective transfer.
@article{MM_2021_33_6_a6,
     author = {A. I. Moshinskij},
     title = {Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {88--106},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/}
}
TY  - JOUR
AU  - A. I. Moshinskij
TI  - Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 88
EP  - 106
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/
LA  - ru
ID  - MM_2021_33_6_a6
ER  - 
%0 Journal Article
%A A. I. Moshinskij
%T Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation
%J Matematičeskoe modelirovanie
%D 2021
%P 88-106
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/
%G ru
%F MM_2021_33_6_a6
A. I. Moshinskij. Description of stationary performance of flow biochemical reactor with diffusion model allowing for mass transfer relaxation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 88-106. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a6/

[1] G. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube”, Proc. Roy. Soc. London. Ser. A, 219:1137 (1953), 186–203

[2] R. Aris, “On the dispersion of a solute in a fluid flowing through a tube”, Proc. Roy. Soc. London. Ser. A, 235:1200 (1956), 67–77 | MR

[3] W. N. Gill, R. Sankarasubramanian, “Exact analysis of unsteady convective diffusion”, Proc. Roy. Soc. London. Ser. A, 316:1526 (1970), 341–350 | Zbl

[4] R. Smith, “Shear dispersion along a rotating axle in a closely fitting shaft”, J. Fluid Mech., 219 (1990), 647–658 | DOI | Zbl

[5] A. D. Khon'kin, “The Tailor and Hyperbolic models of unsteady longitudinal dispersion of a passive imparity in convection-diffusion processes”, Journal Appl. Math. Mech., 64:4 (2000), 607–617 | DOI | Zbl

[6] A. I. Moshinskii, “Effective diffusion of a dynamically passive impurity in narrow channels”, Journal of Applied Mechanics and Technical Physics, 28 (1987), 374–382 | DOI

[7] R. Aris, Introduction to the analysis of chemical reactors, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1965, 337 pp.

[8] V. S. Berman, V. N. Kurdyumov, Yu. S. Ryazantsev, “The stability of steady regimes in an isothermal chemical flow reactor”, Fluid Dynamics, 20 (1985), 322–325 | DOI | Zbl

[9] V. A. Buchin, O. B. Larin, “Stabilization of the unstable operating regimes of a displacement reactor”, Dokl. AN SSSR, 271:6 (1983), 1440–1443

[10] K. B. Bischoff, “Accuracy of the axial dispersion model for chemical reactor”, AIChE Journal, 14:5 (1968), 820–821 | DOI

[11] V. V. Dilman, A. E. Kronberg, “Relaksatsionnye iavleniia pri prodolnom peremeshivanii”, Teoreticheskie osnovy khimicheskoi tekhnologii, 17:5 (1983), 614–629

[12] K. R. Vesterterp, V. V. Dilman, A. E. Kronberg, A. Benneker, “Volnovaia model prodolnogo peremeshivaniia”, Teoreticheskie osnovy khimicheskoi tekhn., 29:6 (1995), 580–587

[13] A. I. Moshinskii. A.I. Moshinskii, “Limiting cases of the equations of the wave model of longitudinal dispersion accompanied by a chemical reaction”, Theoretical Foundations of Chemical Engineering, 37:3 (2003), 268–275 | DOI

[14] A. I. Moshinskii, Modelirovanie teplomassoobmennykh protsessov na osnove obobshchennykh diffuzionnykh uravnenii, Izd-vo KNORUS, M., 2019, 444 pp.

[15] S. K. Godunov, Uravneniia matematicheskoi fiziki, Nauka, M., 1971, 416 pp.

[16] A. I. Moshinskii, “Dispersion of dynamically passive impurities in non-one-dimensional liquid flow”, Journal of Applied Mechanics and Technical Physics, 45 (2004), 528–541 | DOI | MR

[17] V. I. Maron, “Dispersion of radioactive impurity in a flow passing through a tube”, Fluid Dynamics, 10 (1975), 167–169 | DOI | MR

[18] F. A. Cleland, R. H. Wilhelm, “Diffusion and reaction in viscous flow tubular reactor”, AIChE Journal, 2:4 (1956), 489–497 | DOI

[19] Iu. M. Svirezhev, Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987, 368 pp.

[20] V. V. Kafarov, A. Iu. Vinarov, L. S. Gordeev, Modelirovanie biokhimicheskikh reaktorov, Lesnaia promyshlennost, M., 1979, 344 pp.

[21] V. F. Zaitsev, A. D. Polianin, Spravochnik po nelineinym differentsialnym uravneniiam: Prilozheniia k mekhanike, tochnye resheniia, Fizmatlit, M., 1993, 464 pp.

[22] A. D. Polianin, “Tochnye resheniia uravnenii gidrodinamiki i teplomassoperenosa”, Teoreticheskie osnovy khimicheskoi tekhnologii, 27:1 (1993), 28–37

[23] V. P. Maslov, V. G. Danilov, K. A. Volosov, Matematicheskoe modelirovanie protsessov teplo-massoperenosa. Evoliutsiia dissipativnykh struktur, Nauka, M., 1987, 352 pp.

[24] V. I. Lagno, S. V. Spichak, V. I. Stognii, Simmetriinyi analiz uravnenii evoliutsionnogo tipa, Ins-t kompiuternykh issledovanii, M.–Izhevsk, 2004, 392 pp. | MR

[25] G. I. Barenblatt, Avtomodelnye iavleniia analiz razmernostei i skeiling, Uchebnoe posobie, Izdatelskii Dom «Intellekt», Dolgoprudnyi, 2009, 216 pp.

[26] A. I. Moshinskii, “Description of the Steady-State Operation of a Biochemical Reactor Using a Diffusion Model”, J. of Engineering Phys. and Thermophysics, 90 (2017), 770–780 | DOI

[27] J.D. Cole, Perturbation methods in applied mathematics, Ginn (Blaisdell), Boston, 1968, 260 pp. | MR | Zbl

[28] A. I. Moshinskii, “Transport relaxation and steady-state stability in an isothermal flow reactor”, Journal of Engineering Physics, 61 (1991), 913–918 | DOI | MR

[29] G. Hall, J.M. Watt (eds.), Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1976, 336 pp. | MR | Zbl

[30] N. S. Koshliakov, E. B. Gliner, M. M. Smirnov, Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaia shkola, M., 1970, 712 pp.

[31] G. G. Malinetskii, Matematicheskie osnovy sinergetiki. Khaos, struktury, vychislitelnyi eksperiment, Izd. 5-e, Izdatelstvo LKI, M., 2007, 312 pp.