Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_6_a4, author = {A. S. Ivanova and A. N. Kirillov}, title = {Numerical modeling of a periodic process that preserves the species structure of a biocommunity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--72}, publisher = {mathdoc}, volume = {33}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/} }
TY - JOUR AU - A. S. Ivanova AU - A. N. Kirillov TI - Numerical modeling of a periodic process that preserves the species structure of a biocommunity JO - Matematičeskoe modelirovanie PY - 2021 SP - 59 EP - 72 VL - 33 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/ LA - ru ID - MM_2021_33_6_a4 ER -
%0 Journal Article %A A. S. Ivanova %A A. N. Kirillov %T Numerical modeling of a periodic process that preserves the species structure of a biocommunity %J Matematičeskoe modelirovanie %D 2021 %P 59-72 %V 33 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/ %G ru %F MM_2021_33_6_a4
A. S. Ivanova; A. N. Kirillov. Numerical modeling of a periodic process that preserves the species structure of a biocommunity. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 59-72. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/
[1] A. N. Kirillov, “Ekologicheskie sistemy s peremennoi razmernostiu”, Obozrenie prikladnoi i promyshlennoi matematiki, 6:2 (1999), 318–336 | Zbl
[2] O. I. Ilin, “Ob optimalnoi ekspluatatsii populiatsii ryb s vozrastnoi strukturoi”, Sibirskii zhurnal industrialnoi matematiki, 10:3 (31) (2007), 43–57 | Zbl
[3] E. A. Andreeva, V. M. Tsiruleva, L. G. Kozheko, “Model upravleniia protsessom rybnoi lovli”, Modelirovanie, optimizatsiia i informatsionnye tekhnologii, 2017, no. 4 (19)
[4] V. G. Ilichev, D. B. Rokhlin, “Optimalnaia strategiia vylova ryby i ekonomika”, Matematicheskoe obrazovanie, 2008, no. 1 (45), 39–45
[5] V. G. Ilichev, L. V. Dashkevich, “Optimalnyi promysel i evoliutsiia putei migratsii rybnykh populiatsii”, Kompiuternye issledovaniia i modelirovanie, 11:5 (2019), 879–893
[6] S. V. Sysoev, Matematicheskoe modelirovanie protsessa lova rybonasosnymi ustanovkami dlia tselei optimalnogo upravleniia, dep. ruk. 299-B2006, Astrakh. gos. tekhn. un-t, Astrakhan, 2006, 21 pp.
[7] A. N. Kirillov, A. S. Ivanova, “Periodicheskii i kvaziperiodicheskii protsessy upravleniia v zadache sokhraneniia vidovogo sostava biosoobshchestva”, Trudy Karelskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2015, no. 10, 99–106
[8] A. N. Kirillov, A. S. Ivanova, “Periodicheskoe upravlenie v zadache sokhraneniia sostava biosoobshchestva”, Materialy Mezhdunarodnoi nauchnoi konferentsii “Dinamicheskie sistemy: ustoichivost, upravlenie, optimizatsiia”, BGU, Minsk, 2018, 119–120
[9] A. N. Kirillov, A. S. Ivanova, Materialy Shestoi Natsionalnoi nauchnoi konferentsii s mezhdunarodnym uchastiem “Matematicheskoe modelirovanie v ekologii”, Periodicheskoe upravlenie sistemoi “khishchnik-zhertva”, FITS PNTSBI RAN, Pushchino, 2019, 91–92
[10] R. Arditi, L. Ginzburg, “Coupling in predator-prey dynamics: ratio-dependence”, Journal of Theoretical Biology, 139 (1989), 311–326 | DOI
[11] W. Hamilton, “Geometry for the selfish herd”, J. of Theoretical Biol., 31 (1971), 295–311 | DOI
[12] A. Ivanova, A. Kirillov, “Equilibrium and control in the biocommunity species composition preservation problem”, Automation and Remote Control, 78:8 (2017), 1500–1511 | DOI | MR | Zbl
[13] S.-D. Shih, “The period of a Lotka-Volterra system”, Taiwanese journal of mathematics, 1:4 (1997), 451–470 | DOI | MR | Zbl
[14] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Fizmatlit, M., 1962, 464 pp. | MR
[15] G. A. Leonov, Mathematical problems of control theory: an introduction, World Scientific, 2001, 172 pp. | MR | Zbl
[16] L. D. Kudriavtsev, Kurs matematicheskogo analiza, v. 3, Izd-vo Drofa, M., 2006, 351 pp.