Numerical modeling of a periodic process that preserves the species structure of a biocommunity
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 59-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model describing the interactions between predators and prey in a given patch is considered. In the model, the prey population stays within the patch while the predator population leaves the patch when food resources are insufficient. The presence or absence of a predator population in the patch is determined by the value of the function representing the trophic attractiveness of the patch for the predator population. The model under study is a system containing differential equations for the population sizes of predators and prey, and a differential equation for the trophic attractiveness of the patch. The problem of preserving the species structure of the patch’s biological community through selection by elimination of individuals is solved. The species structure of the biological community is defined as the entirely of species and types of interactions between them. A model of the periodic process of external intervention that preserves the species structure of the community is presented. A numerical method was developed and a program was designed that implement the built model. The results of the program testing are presented.
Keywords: trophic attractiveness of the patch, periodic process, numerical method.
@article{MM_2021_33_6_a4,
     author = {A. S. Ivanova and A. N. Kirillov},
     title = {Numerical modeling of a periodic process that preserves the species structure of a biocommunity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/}
}
TY  - JOUR
AU  - A. S. Ivanova
AU  - A. N. Kirillov
TI  - Numerical modeling of a periodic process that preserves the species structure of a biocommunity
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 59
EP  - 72
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/
LA  - ru
ID  - MM_2021_33_6_a4
ER  - 
%0 Journal Article
%A A. S. Ivanova
%A A. N. Kirillov
%T Numerical modeling of a periodic process that preserves the species structure of a biocommunity
%J Matematičeskoe modelirovanie
%D 2021
%P 59-72
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/
%G ru
%F MM_2021_33_6_a4
A. S. Ivanova; A. N. Kirillov. Numerical modeling of a periodic process that preserves the species structure of a biocommunity. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 59-72. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a4/

[1] A. N. Kirillov, “Ekologicheskie sistemy s peremennoi razmernostiu”, Obozrenie prikladnoi i promyshlennoi matematiki, 6:2 (1999), 318–336 | Zbl

[2] O. I. Ilin, “Ob optimalnoi ekspluatatsii populiatsii ryb s vozrastnoi strukturoi”, Sibirskii zhurnal industrialnoi matematiki, 10:3 (31) (2007), 43–57 | Zbl

[3] E. A. Andreeva, V. M. Tsiruleva, L. G. Kozheko, “Model upravleniia protsessom rybnoi lovli”, Modelirovanie, optimizatsiia i informatsionnye tekhnologii, 2017, no. 4 (19)

[4] V. G. Ilichev, D. B. Rokhlin, “Optimalnaia strategiia vylova ryby i ekonomika”, Matematicheskoe obrazovanie, 2008, no. 1 (45), 39–45

[5] V. G. Ilichev, L. V. Dashkevich, “Optimalnyi promysel i evoliutsiia putei migratsii rybnykh populiatsii”, Kompiuternye issledovaniia i modelirovanie, 11:5 (2019), 879–893

[6] S. V. Sysoev, Matematicheskoe modelirovanie protsessa lova rybonasosnymi ustanovkami dlia tselei optimalnogo upravleniia, dep. ruk. 299-B2006, Astrakh. gos. tekhn. un-t, Astrakhan, 2006, 21 pp.

[7] A. N. Kirillov, A. S. Ivanova, “Periodicheskii i kvaziperiodicheskii protsessy upravleniia v zadache sokhraneniia vidovogo sostava biosoobshchestva”, Trudy Karelskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2015, no. 10, 99–106

[8] A. N. Kirillov, A. S. Ivanova, “Periodicheskoe upravlenie v zadache sokhraneniia sostava biosoobshchestva”, Materialy Mezhdunarodnoi nauchnoi konferentsii “Dinamicheskie sistemy: ustoichivost, upravlenie, optimizatsiia”, BGU, Minsk, 2018, 119–120

[9] A. N. Kirillov, A. S. Ivanova, Materialy Shestoi Natsionalnoi nauchnoi konferentsii s mezhdunarodnym uchastiem “Matematicheskoe modelirovanie v ekologii”, Periodicheskoe upravlenie sistemoi “khishchnik-zhertva”, FITS PNTSBI RAN, Pushchino, 2019, 91–92

[10] R. Arditi, L. Ginzburg, “Coupling in predator-prey dynamics: ratio-dependence”, Journal of Theoretical Biology, 139 (1989), 311–326 | DOI

[11] W. Hamilton, “Geometry for the selfish herd”, J. of Theoretical Biol., 31 (1971), 295–311 | DOI

[12] A. Ivanova, A. Kirillov, “Equilibrium and control in the biocommunity species composition preservation problem”, Automation and Remote Control, 78:8 (2017), 1500–1511 | DOI | MR | Zbl

[13] S.-D. Shih, “The period of a Lotka-Volterra system”, Taiwanese journal of mathematics, 1:4 (1997), 451–470 | DOI | MR | Zbl

[14] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Fizmatlit, M., 1962, 464 pp. | MR

[15] G. A. Leonov, Mathematical problems of control theory: an introduction, World Scientific, 2001, 172 pp. | MR | Zbl

[16] L. D. Kudriavtsev, Kurs matematicheskogo analiza, v. 3, Izd-vo Drofa, M., 2006, 351 pp.