Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_6_a2, author = {S. A. Soukov}, title = {Parallelization for unstructured adaptive mesh {CFD} algorithm}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--44}, publisher = {mathdoc}, volume = {33}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a2/} }
S. A. Soukov. Parallelization for unstructured adaptive mesh CFD algorithm. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 31-44. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a2/
[1] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky et al, “Numerical Simulation of the Recirculation Flow during the Supersonic Separation of Moving Bodies”, Math. Models Comp. Simul., 2020, no. 12, 282–292 | DOI
[2] A. L. Afendikov, A. A. Davydov, A. E. Lutskii, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ya. V. Khankhasaeva, Adaptivnye veivletnye algoritmy dlya resheniya zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.
[3] https://www.ansys.com/products/fluids/ansys-fluent
[4] O. Antepara, O. Lehmkuhl, J. Chiva, R. Borrell, “Parallel adaptive mesh refinement simula-tion of the flow around a square cylinder at Re=22000”, Proc. Eng., 61 (2013), 246–250 | DOI
[5] A. Schwing, I. Nompelis, G. Candler, “Parallelization of unsteady adaptive mesh refinement for unstructured Navier-Stokes solvers”, AIAA AVIATION 2014 — 7th AIAA Theor. Fluid Mechanics Conf., American Institute of Aeronautics and Astronautics Inc., 2014 | DOI
[6] J. Blazek, Computational fluid dynamics: Principles and applications, Elsevier, Amsterdam, 2001 | MR | Zbl
[7] K. Powell, P. Roe, J. Quirk, “Adaptive-Mesh Algorithms for Computational Fluid Dynamics”, Algorithmic Trends in Computational Fluid Dynamics, ICASE/NASA LaRC Series, eds. Hussaini M.Y., Kumar A., Salas M.D., Springer, N.Y., 1993 | MR
[8] E. Sozer, C. Brehm, C. C. Kiris, Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered CFD solvers, AIAA Paper 2014-1440, 2014
[9] T. J. Barth, Numerical Aspects of Computing High-Reynolds Number Flows on Unstructured Meshes, AIAA Paper 91-0721, 1991
[10] S. Kim, D. Caraeni, B. Makarov, AIAA 16th Computational Fluid Dynamics Conf., Technical report (Orlando, Florida American Institute of Aeronautics and Astronautics, June 2003)
[11] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin-Heidelberg, 2009 | DOI | MR | Zbl
[12] Y. Wada, M. S. Liou, A flux splitting scheme with high resolution and robustness for discontinuities, AIAA Paper 94-0083
[13] T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno, K. Fukuda, “Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation”, Physics of Fluids, 28 (2016), 056101 | DOI | MR
[14] A. S. Kryuchkova, “Numerical simulation of a hypersonic flow over HB-2 model using UST3D programming code”, J. Phys.: Conf. Ser., 1250 (2019), 012010 | DOI
[15] https://www.kiam.ru/MVS/resourses/k100.html
[16] S. A. Sukov, A. V. Gorobets, P. B. Bogdanov, “Portable Solution for Modeling Compressible Flows on All Existing Hybrid Supercomputers”, Math. Models Comp. Simul., 10:2 (2018), 135–144 | DOI | MR
[17] A. Gorobets, S. Soukov, P. Bogdanov, “Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers”, Computers and Fluids, 173 (2018), 171–177 | DOI | MR | Zbl